Evidence for a Quantum-to-Classical Transition in a Pair of Coupled Quantum Rotors

Bryce Gadway, Jeremy Reeves, Ludwig Krinner, and Dominik Schneble Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

Motivation

We study the dynamical response of matter-waves to a pulsed incommensurate lattice.

This system realizes a variant of the δ -kicked rotor model [Casati, et al. (1979); Moore, et al. (1995)], that of coupled kicked quantum rotors

A quantum-to-classical transition is predicted to occur in this system [S. Adachi, M. Toda, K. Ikeda, PRL 61, 659 (1988)]

- quantum-to-classical transition in simple closed system with unitary, time-reversible dynamics
- classical physics emerges naturally without coupling to reservoir & decoherence
- new light on nature of localization in 2D systems

BEC in a pulsed, incommensurate optical lattice

For short δ -like pulses, the system is described by

$$\hat{H} = \frac{-\frac{\hbar^2 \partial_z^2}{2M} + \left[\frac{s_1 E_R \tau}{2} \cos(2k_1 z) + \frac{s_2 E_R \tau}{2} \cos(2\eta k_1 z)\right] \sum_{j=1}^{N} \delta(t - jT)$$

For irrational η , with no intersection between sets of states coupled by the two lattices, we can write an effective 2D Hamiltonian in the basis of plane-wave states $|m,n\rangle$ with momentum $p_{mn} = (m + \eta n) 2\hbar k_1$

Off-Resonant Kicking (κ /4 π \neq 0)

Dynamical localization due to pseudo-random quasi-energies

Coupling leads to classical diffusion

Energy change (in E_R) over 40 kicks

Simulated long-time dynamics

Resonant, ballistic momentum spreading along modes of lattice 1(with $K_1 = 1.6$) is suppressed by strong off-resonant kicking with K₂ $\eta^{2}\kappa/4\pi = 1.86$ (T=124 μs) $\kappa/4\pi \approx 1$

- Coupling $\eta \kappa mn$ destroys resonance for modes $n \neq 0$. However, nearly 1/2 time spent in n = 0 subspace
- Suppression of transport reminiscent of Kapitza pendulum / ponderomotive potentials