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BEC in a pulsed, 
incommensurate optical lattice
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For short δ-like pulses, the system is described by

For irrational η, with no intersection between sets of 
states coupled by the two lattices,  we can write an 
effective 2D Hamiltonian in the basis of plane-wave 
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•  quantum-to-classical transition in simple closed
    system with unitary, time-reversible dynamics

Motivation

We study the dynamical response 
of matter-waves to a pulsed 
incommensurate lattice.  

A quantum-to-classical transition is predicted to occur 
in this system [S. Adachi, M. Toda, K. Ikeda, PRL 61, 659 (1988)] 

This system realizes a variant of  
the δ-kicked rotor model  
[Casati, et al. (1979) ; Moore, et al. 
(1995)] ,  that of  
coupled kicked quantum rotors  

•  classical physics emerges naturally without coupling
   to reservoir & decoherence

•  new light on nature of localization in 2D systems

Off-Resonant Kicking (κ / 4π ≠ 0)
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Dynamical localization due to
pseudo-random quasi-energies
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Single-lattice

n2 η
2 κ

 / 4
π 

m
od

[1
]

0

n
0-2-4-6 2 4 6

Coupling leads to
classical diffusion

(T = 36 µs)

Two-lattice

κ/4π = 0.29
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Energy change (in ER) over 40 kicks 

On-Resonant Kicking (κ / 4π ≈ 0)

Coupling                     destroys resonance for 
modes  n ≠ 0. However, nearly 1/2 time 
spent in  n = 0 subspace

Suppression of transport reminiscent of 
Kapitza pendulum / ponderomotive 
potentials
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η2κ/4π = 1.86(T = 124 µs)

Resonant, ballistic momentum spreading along modes of 
lattice 1(with K1 = 1.6) is suppressed by strong off-resonant 
kicking with K2
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Agrees well with
time-independent
Floquet analysis
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evolution 
operator

Dynamics 
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Simulated long-time dynamics

Simulated long-time dynamics
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