Driven Dynamics beyond the Born-Oppenheimer Approximation: Nonadiabatic Diffraction of Matter Waves

Jeremy Reeves, Ludwig Krinner, Michael Stewart, Arturo Pazmino, and Dominik Schneble Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

Experimental Scheme and Orbital Transfer

A BEC is coupled to the deep wells of a stateselective optical lattice via microwave driven hyperfine ground state transitions.

The Hamiltonian in the presence of Rabi coupling

Band Spectroscopy

Selectively transfer atoms into bands of the lattice. Band occupation is probed with a "band map"

Osc. contrast ~100%, up to small detuning effects.

Strong coupling $\hbar\Omega > E_r^{(2)}$

Reduction of oscillation amplitude is inconsistent with Rabi dynamics.

(right). $\Omega \tau = \pi$ in the $V_0 = 0$ case, line shapes are given by the Fourier transform of the pulse and Franck-Condon overlap of the band and free particle states.

Coherent oscillations between 0ħk and ±2ħk momentum states. The internal and external dynamics oscillate in phase, locked together.

Dressed State Picture

 diagonalization of potential transforms momentum operator:

$$\hat{p} \Rightarrow \begin{pmatrix} \hat{p} - \langle \chi_{+} | \hat{p} | \chi_{+} \rangle & \langle \chi_{-} | \hat{p} | \chi_{+} \rangle \\ \langle \chi_{+} | \hat{p} | \chi_{-} \rangle & \hat{p} - \langle \chi_{-} | \hat{p} | \chi_{-} \rangle \end{pmatrix}$$

- weak coupling gives light shifts $\pm \gamma_{n=0} \Omega/2$ as expected for a two level system
- upper states see off-resonant light shift $\pm \gamma_{\text{n=0}} \Omega^2 / 4 \delta$
- For $\hbar\Omega > E_r^{(2)}$ higher momentum states get mixed into the dressed states, and the resulting "free" eigenstates of the dressed system take on periodicity of the lattice

 $P_{2n\hbar k}(t) = J_n^2 \left(\frac{V_0 t}{2\hbar}\right)$

0 1 2 3 ħΩ [E_r⁽²⁾]

Emergence of Adiabatic Diffr.

Connecting to Kapitza-Dirac Diffraction

For strong coupling $\hbar\Omega$ >V₀, internal and external dynamics decouple.

Regain evelopes for standard Raman-Nath diffraction:

Time dynamics from nonadiabatic to adiabatic

z [d/2]

Condensate Dynamics

In-situ atom interferometry

