
Emergence of Adiabatic Diffr.

Condensate Dynamics
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In-situ atom interferometry

• measure oscillation period
  of 67ms (2-photon recoil)
• decay consistent with
   wave-packet separation
   in the trap 
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Connecting to Kapitza-Dirac Diffraction
For strong coupling    Ω>V

0
, internal and external 

dynamics decouple.
Regain evelopes for standard Raman-Nath diffraction: 
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Time dynamics from 
nonadiabatic to adiabatic

   Driven Dynamics beyond the Born-Oppenheimer Approximation:

     Nonadiabatic Diffraction of Matter Waves
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Band Spectroscopy

Ω/2π=8.1 kHz
τ=60 µs    V0=30Er
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The Hamiltonian in the presence of Rabi coupling
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Weak coupling 
Ω<E

r
(2)=14.8 kHz

Reduction of oscillation 
amplitude is inconsistent 
with Rabi dynamics.

Coherent oscillations 
between 0ħk and ±2ħk
momentum states.
The internal and external 
dynamics oscillate in 
phase, locked together.

Strong coupling 
   Ω>E

r
(2)

Rabi oscillations with 
Ω reduced by the 
Franck-Condon overlap.

Osc.  contrast ~100%, up to small detuning effects.

Experimental Scheme
and Orbital Transfer

A BEC is coupled to the
deep wells of a state-
selective optical lattice 
via microwave driven
hyperfine ground state
transitions.

Resonant Driving

Selectively transfer atoms 
into bands of the lattice.
Band occupation is
probed with a “band map”
(right).  Ωτ=π in the 
V

0
=0 case, line shapes 

are given by the Fourier
transform of the pulse
and Franck-Condon 
overlap of the band 
and free particle states.
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•  resonance condition 
   satisfied twice per 
    lattice site

Bare state basis









Ω

Ω

−

+

),,(0
0),,(

zV
zV

δ
δ

=H

•  weak variation of the mixing angle;
   neglect kinetic energy
•  coupling (larger than all other energy 
   scales) splits the adiabatic potentials

•  diagonalization of potential transforms 
    momentum operator:

Adiabatic dressed states
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• Born-Oppenheimer 
   approximation fails 
• mixing angle varies 
   rapidly and its 
   gradient cannot 
   be neglected 
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Nonadiabatic case:  weak coupling
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• weak coupling gives light shifts ±γn=0Ω/2 as expected for a two level system 
• upper states see off-resonant light shift ±γn=0Ω

2/4δ
• For     Ω>E

r
(2)  higher momentum states get mixed into the dressed states, and

  the resulting “free” eigenstates of the dressed system take on periodicity of  the lattice

Dressed State Picture
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