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• tunable de Broglie wavelength: no resol. limit 
• non-destructive interrogation
• inelastic scattering for study of excitations
• spin-dependent coupling for the study of 
  magnetic ordering in quantum gas mixtures

Sanders et al., PRL 2010
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Binary 1D collisions
(quantum 

”Newton’s cradle”)
with a spin mixture

Olshanii, PRL 1998
Kinoshita et al., Nature 2006

• decay is nearly exponential with band-structure 
   mismatch δΕ
• short interaction time → Fourier spread

Bragg diffraction
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band-structure
w/ heating

  analogous to thermal Debye-Waller (DW) factor  ( e-q2u2/2 )
  but here due to spread of target wavefunction φ0 

  

{
Structure factor 
of the target

= square of Fourier 
transform of target’s 
single-site density
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inhibition is of consequence for thermalization
& thermometry schemes in quantum gas mixtures

Motivation

Elastic vs. Inelastic Scattering

Collisions in the Presence

Probing Localization in the Target

2nd order Bragg diffraction

 Identifying Bragg Resonances

(c)

0 2 4 6
-vp / vR

1

3

2

00.51
2 53

0

N
d

iff
[a

.u
.]

1

Tmove [ms]

(e)

(d)

1 32
0

N
d

iff
[a

.u
.]

1

vrel / vR

v r
el

/
v R

4

0 3010

N
d

iff
[%

]

6

4

2

0

sz
20

(f )

vL= δω (λz/4π)p t

δω= ω1 - ω2ω1 ω2

sz=50

-4 -2 0

t

vp vR / = -4 -2 0

p

(a)

(b)
y

z
vt vR / =

The de-Broglie wavelength associated with the relative motion
is scanned  precisely using a moving optical  lattice for the 
target atoms

(a) experimental method
(b) TOF spectrum for 2nd order
       Bragg diffraction
(c) velocity scan: integrated 
      TOF spectra of the probe
(d) Specular reflection and 
      Bragg resonances
(e) Growth of population in
       diffracted peaks

simplest implementation:  use of a magetic 
field gradient for relative displacement;
release probe atoms into weakly confining ODT

Detecting Forced-AFM Order

i.e. zero-point, rather than thermal, motion

(a) Velocity spectrum of the probe (atoms in state1,1) after 
      interacting with the crystal.  The first-order Bragg
      resonance of the half-period crystal is at  v= -2vR , leading
      to a suppression of the signal at v= - vR.

(b) Number of Bragg-diffrated atoms as a function of the spin
       population imbalance in the crystal.

we create a short-perdiod crystal of two atomic species 
that are pinned to the intensity maxima/minima of a 
state-dependent optical lattice at 788 nm, 
moving  at v= - vR  
 

of Lattice Band Structure

transmitted 
probe atoms
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Optical potentials (σ - polarization) b=2,-2 r=1,-1
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