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Abstract of the Dissertation

Two-Component Bosons in

State-Dependent Optical Lattices

by

Daniel Alexander Pertot

Doctor of Philosophy

in

Physics

Stony Brook University

2011

Ultracold atoms in optical lattices provide a highly control-
lable environment for the clean experimental realization of various
model Hamiltonians from condensed matter and statistical physics.
For example, the two-component Bose-Hubbard model, which re-
duces to an anisotropic spin-1/2 Heisenberg model in a certain limit
and thus allows for the study of quantum magnetism, can be im-
plemented by using bosons with two different internal states that
couple differently to an optical lattice potential. In this thesis, I
present our first experiments with two-component hyperfine-state
mixtures of ultracold 87Rb atoms in a state-dependent optical lat-
tice, both in the strongly correlated regime and in the context of
nonlinear atom optics.

For the production of 87Rb Bose-Einstein condensates we have
developed a moving-coil transporter apparatus featuring a mag-
netic TOP trap which serves as a “phase-space funnel” to load a
crossed optical dipole trap. The apparatus further incorporates a
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three-dimensional optical lattice setup with simultaneously usable
hyperfine state-dependent and state-independent lattice beams of
different spacing along the vertical axis. Internal state control is
performed via rf and microwave Rabi pulses and Landau-Zener
sweeps.

As a first step towards studying strongly correlated two-
component mixtures, we have realized a state-selective superfluid-
to-Mott insulator transition, where one component enters the Mott
insulator regime, while the other one stays superfluid. Using the
state-dependent lattice we can tune the second component’s prop-
erties from highly superfluid to strongly localized. At both ex-
tremes we find a reduction of the coherence of the primary com-
ponent, i.e. a shift of the Mott transition to smaller values of the
ratio U/t of interaction to tunneling. We ascribe this to a polaron-
like dressing on the one hand, and a “quantum emulsion” causing
a disordered atomic background potential on the other hand.

Further, we have observed and studied four-wave mixing of
two-component matter waves. Using state-selective Kapitza-Dirac
diffraction of a two-component BEC, we prepare seed and pump
modes differing both in momentum and internal state. A novel
collinear four-wave mixing process then populates the initially
empty output modes. While this process can complicate studies
of bosonic mixtures loaded into state-dependent optical lattices,
it might prove useful for possible applications in quantum atom
optics.
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Chapter 1

Introduction

In 1925, inspired by Bose’s work [1], Einstein conjectured that at sufficiently
high phase-space density a gas of bosons saturates and any additional particles
have to condense into the ground state, which can thus become macroscopically
populated [2, 3]. The validity of this idea has been demonstrated in spectacular
clarity in 1995 by the achievement of Bose–Einstein condensation (BEC) in
dilute atomic gases [4–7]. These gases, however, are not ideal Bose gases.
Binary collisions between pairs of atoms lead to weak interactions between the
bosons, and the resultant deviations from the non interacting case were at the
focus of early experimental and theoretical research in the field of ultracold
atoms [8, 9].

About a decade ago, the focus shifted towards the experimental realization
and study of strongly interacting many-body systems which are characterized
by the competition of kinetic energy and interaction energy [10]. Such strongly
correlated many-body systems can be obtained either by tightly confining the
atoms in optical standing waves [11], commonly called optical lattices, or by
tuning their mutual interactions via Feshbach resonances [12]. Following the
first approach and using a three-dimensional optical lattice, in 2002 Greiner et
al. [13] were able to observe the quantum phase transition from a lattice su-
perfluid to a Mott insulator, realizing a theoretical proposal of Jaksch et al.
from 1998 [14]. This hallmark experiment constitutes an important achieve-
ment creating inter-disciplinary links between atomic physics, quantum optics,
condensed matter and statistical physics.

Many new, interesting phenomena arise when a second atomic species with
properties different from the first is added. Such mixtures allow for the study of
many interesting topics, such as the two-component Bose-Hubbard model [15–
18], with its connection to quantum magnetism [15, 19], and models for deco-
herence mechanisms [20, 21].

In this thesis, I describe a new versatile experimental setup to produce
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two-component hyperfine-state mixtures of ultracold 87Rb atoms in a state-
dependent optical lattice. Further, I discuss our first experiments, both in the
strongly correlated regime and in the context of nonlinear atom optics.

Bosonic mixtures in optical lattices

Compared to the single-component case, the description of mixtures presents
richer physics, but also depends on additional parameters, such as the ratio of
the tunneling rates, the interspecies interaction, and the relative atom num-
bers. The introduction of a second component allows for the investigation of
important phenomena such as polaron physics [22–24] and phonon-mediated
long-range interactions [18, 23], as well as effects of impurities and disorder [25–
29].

Here, I report on the observation of many-body interaction effects for a
homonuclear bosonic mixture in a three-dimensional optical lattice with vari-
able state dependence along one axis. Near the superfluid-to-Mott insulator
transition for one component, we find that the presence of a second compo-
nent can reduce the apparent superfluid coherence, most significantly when
the second component either experiences a strongly localizing lattice potential
or none at all. We examine this effect by varying the relative populations and
lattice depths, and discuss the observed behavior in view of recent proposals
for atomic-disorder and polaron-induced localization.

Four-wave mixing and non-linear atom optics

In four-wave mixing, two waves form a grating from which a third wave
diffracts, thus generating a fourth wave. Four-wave mixing is a fundamental,
well-studied concept in nonlinear optics and spectroscopy [30]. Its matter-
wave analogue, based on binary collisions in ultracold atomic gases, was first
demonstrated experimentally a decade ago [31–33], establishing the field of
nonlinear atom optics [34]. Matter-wave four-wave mixing has been used for
coherent matter-wave amplification [35, 36], and for the generation of corre-
lated atom pairs [34–38]. Energy and momentum conservation require the
magnitudes of all atomic momenta in the center-of-mass frame to be equal
which, for atoms in a single internal state, necessitates a two-dimensional ge-
ometry [32, 33]. By modifying the dispersion relation with an optical lattice,
non-degenerate four-wave mixing of a single species becomes possible also in
one dimension [39–41].

Despite considerable theoretical work on atomic four-wave mixing (FWM)
with more than one internal state [42–45], experiments have only very recently
started to explore possible mechanisms for such FWM [38, 46]. The addi-
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tional internal degree of freedom allows for degenerate FWM to occur in one
dimension, with pairs of waves in different internal states sharing the same mo-
mentum mode, opening up possibilities to generate non-classical matter-wave
states, e.g. with macroscopic spin entanglement [43, 44].

In this thesis, I demonstrate free-space collinear atomic FWM involving two
internal states with distinct, macroscopically populated momentum modes.
Starting from a single-species Bose–Einstein condensate, seed and pump modes
are prepared through microwave state transfer and state-selective Kapitza–
Dirac diffraction. Four-wave mixing then populates the initially empty out-
put modes. Simulations based on a coupled-mode expansion of the Gross–
Pitaevskii equation are in very good agreement with experiment. We find
that for a homonuclear mixture of interacting superfluids, four-wave mixing
processes can alter the expected momentum-space distributions, masking or
even mimicking in-situ interaction effects. Moreover, our system should be of
interest in the context of quantum atom optics [47].

Outline of the thesis

After summarizing the fundamentals of BEC in dilute atomic gases in chap-
ter 2, I review important concepts from atomic physics in chapter 3. In chap-
ter 4, a description of our experimental apparatus is given and experimental
techniques for the probing and the manipulation of the motion and the in-
ternal states of the BEC are discussed. Then, in chapter 5, I describe our
experiments with two-component bosons in optical lattices. After a short look
at the two-component Bose-Hubbard model, our observations on the effects
of a second tunable “background” component on the SF-MI transition of a
first component are discussed and interpreted in terms of lattice polarons on
the one hand, and localization and percolation phenomena due to an atomic
disorder potential on the other. In chapter 6, I will switch to our experiments
on two-component four-wave mixing, which, for the most part, are performed
on a trapped continuum BEC in three dimensions. Finally, a short conclusion
will be given in chapter 7.
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Chapter 2

Fundamentals: Bose-Einstein
condensation in dilute gases

2.1 Introduction

The idea of Bose-Einstein condensation has its origin in 1924, when Einstein
applied Bose’s new way of calculating Planck’s black-body radiation spec-
trum [1] to the ideal monatomic gas [2, 3]. He found that at a certain point
the density of the gas would saturate, and argued that any increase in density
beyond this point would lead to a “condensation” of the excess particles into
the state of lowest energy.

Initially, this “peculiar condensation phenomenon” had “rather got the rep-
utation of having only a purely imaginary existence,” as London had put it
in 1938 [48], when he insightfully suggested that the λ-transition and thus
superfluidity in liquid Helium could be related to the concept of Bose-Einstein
condensation [48, 49]. Even though his idea was appealing, the strong inter-
actions in this system considerably complicate the theoretical understanding
and obscure the basic physics of Bose-Einstein condensation. Therefore, for
many decades a cloud of mystery was hanging over the topic and motivated
physicists to find an experimental system in which the phenomenon could be
clearly observed and studied.

Only 70 years after its prediction, Bose-Einstein condensation of weakly
interacting particles could be unambiguously realized and observed in an ul-
tracold dilute gas of neutral alkali atoms [4–7]. This involved cooling mat-
ter down to the lowest temperatures ever achieved, as the temperatures for
condensation are extremely low owing to the extreme diluteness necessary to
prevent the atoms from simply combining into molecules. The achievement of
BEC thus builds heavily upon the breakthroughs in laser cooling and atom
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trapping [50] and evaporative cooling [51] made throughout the 1980s.
Since the achievement of BEC in 1995, considerable theoretical and exper-

imental progress has been made. Many textbook-like experiments not only
made it possible to accurately test 50-year-old predictions by Bogoliubov and
others, but also to explore entirely new questions. Detailed historical accounts
can be found, for example, in the Nobel lectures of Cornell, Wieman and
Ketterle [52, 53].

The phenomenon of Bose-Einstein condensation and its fundamental prop-
erties are described in detail in many statistical physics textbooks [54, 55], in
textbooks about many-body physics [56], and also in books that are devoted
to the particular case of BEC in the dilute alkali gases [57, 58]. Much knowl-
edge can also be found in review articles [8, 9, 59]. In the following, the basic
properties which are relevant for the remainder of this thesis are introduced
and discussed.

2.2 Bose vs. Fermi statistics

In quantum mechanics the symmetrization postulate states that the wavefunc-
tion of a system of identical particles has to be either completely symmetric
or completely anti-symmetric under the exchange of any two particles. In a
simple picture, this can be explained by considering the wave function of a
system of identical particles. Now, if we exchange the labels of two particles in
the wavefunction, measurements must not depend on this exchange. Assuming
that the wavefunction gets multiplied by a phase factor when two labels are
interchanged, the modulus of the wavefunction is unaffected only if the phase
factor is either +1 or −1. Particles of the first kind (completely symmetric)
are called bosons and they obey Bose-Einstein statistics, while particles of the
second kind (completely anti-symmetric) are called fermions and they obey
Fermi-Dirac statistics. In all experiments performed to date, fermions have
corresponded to particles with half-integer spin, while particles with integer
spins have corresponded to bosons. In 1940, this connection between spin and
exchange statistics could also be derived theoretically by Pauli [60] based on
relativistic quantum field theory (spin-statistics theorem). As an aside, more
exotic exchange statistics are possible in less than three spatial dimensions,
for example anyonic statistics in two dimensions [61] with connections to the
fractional quantum Hall effect.

The exchange statistics of atoms leads to fundamentally different ways of
how they behave at low temperatures. We see this by comparing the thermal
de Broglie wavelength λT = h/

√
2πmkBT and hence the spatial extent of the

single particle wave function of an atom with the average particle separation
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d = 1/n1/3. Here T is the temperature, m is the mass, kB is Boltzmann’s
constant, h is Planck’s constant, and n is the number density. The thermal
de Broglie wavelength becoming as large as the average inter-particle spacing
defines the degeneracy temperature TD around which exchange statistics start
to play a role, either bosonic or fermionic. Bose gases start to condense into
the ground state and Fermi gases fill up the Fermi sea. For T � TD the
exchange statistics becomes more or less unimportant, and Fermi, Bose and
Boltzmann statistics essentially lead to the same physical properties.

Neutral atoms are, of course, composite bosons or fermions made up of
more elementary particles. Therefore they have internal excitations and can,
in principle, break apart into composites of different statistics. However, the
temperatures considered here are so low, that all internal excitations are frozen
out, and each atom can be regarded as a simple bosonic particle of mass m.

2.3 The ideal Bose gas in a harmonic trap

Let us first consider an ideal, i.e. non-interacting, Bose gas in a harmonic
trapping potential. The Hamiltonian is a direct sum of single-particle Hamil-
tonians

H =
p2

2m
+

1

2
mqtΩq (2.1)

where Ω is a 3 by 3 matrix whose eigenvalues are the trap frequencies along the
main axes of the harmonic potential (that is the main axes of the equipotential
ellipsoids). According to the Bose-Einstein distribution function, the mean
occupation of state i of energy εi is

n̄i =
1

eβ(εi−µ) − 1
(2.2)

with β = 1/kBT and the chemical potential µ, which is determined from the
condition that the mean total atom number has to be N =

∑
i n̄i. Since

occupation numbers cannot become negative, the chemical potential has to
stay below the ground state energy µ < ε0. As µ approaches ε0 from below,
the occupation of the lowest energy state grows to larger and larger values
until eventually all available particles are in the ground state.

Let us thus separate the ground state occupation from the sum over all
energy levels before approximating the sum by an integral over the density of
states D(ε) assuming closely spaced energy levels and temperatures far above
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the level spacings:

N =
1

eβ(ε0−µ) − 1
+

∫ ∞
0

dε
D(ε)

eβ(ε−µ) − 1
. (2.3)

If the total atom number exceeds the number of available occupancies in the
thermal part (integral term), the thermal gas saturates and the excess number
of particles have to populate the ground state of the system, i.e. it forms
the Bose-Einstein condensate. We can compute the fraction of atoms in the
condensate using the so called “Bose function” [54, 57], which is defined as

gp(z) =
1

Γ(p)

∫ ∞
0

dx
x1/2

z−1ex − 1
=
∞∑
n=1

zn

np
= Lip(z) (2.4)

and which, more generally, is known as the polylogarithm function Lip(z). In
the special case z = 1 it reduces to the Riemann zeta function gp(1) = ζ(p).

The particle density in the thermal component in the semi-classical ap-
proximation [9] is

nT (r) = λ−3
T g3/2(e

β(µ−V (r))). (2.5)

When the temperature drops below a critical value

Tc =
~ω̄
kB

N1/3

[ζ(3)]1/3
≈ 0.94

~ω̄
kB
N1/3, (2.6)

the ground state becomes macroscopically occupied and there is a phase tran-
sition between the normal phase and the Bose-Einstein condensate. Here,
ω̄ = (ωxωyωz)

1/3 is the mean trap frequency. For the ideal Bose gas in a
three-dimensional harmonic trap, the condensate fraction behaves as

N0/N = 1− (T/Tc)
3 (2.7)

for T < Tc. Note the remarkable feature of BEC that the transition temper-
ature at which the ground state starts to be macroscopically populated is far
above the energy distance to the first excited state for typical condensate atom
numbers, kBTc � ~ω̄.

While the intuitive picture of Bose-Einstein condensation as described
above captures the physical processes correctly, it fails in precisely defining
what a Bose-Einstein condensate is. This was achieved by Penrose and On-
sager in 1956 [62] who studied the single-particle density matrix of the many-
body system ρ(r1, r2) = 〈Ψ†(r1)Ψ(r2)〉. A Bose-Einstein condensate exhibits
one macroscopically occupied eigenvalue of the density matrix, which measures
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the condensate fraction, and off-diagonal long-rage order [63] throughout the
whole system. For Helium-4 at T = 0 the condensate fraction is only about
10%, whereas in dilute gases condensate fractions in excess of 95% can be
achieved. The one-particle density matrix in a homogeneous system depends
only on the relative distance r = |r1 − r2| between two locations. The zero-
momentum component is macroscopically occupied if the one-particle density
matrix tends to a finite value for r →∞, which is just the condensate fraction.

2.4 Taking into account interactions

The non-interacting Bose gas turns out to be quite an oversimplification even
in the case of trapped dilute ultracold gases, where in fact, despite their dilute-
ness, the interaction energy dominates. At the temperatures we are interested
in here, only s-wave collisions contribute, since the atoms do not have enough
kinetic energy to overcome the centrifugal barrier that is present for non-zero
partial waves, i.e. collisions with angular momentum different from zero. Un-
der the condition k � 1/rc where k is the modulus of the relative collision
wave vector and rc is a characteristic length scale of the interatomic potential,
the potential can be safely replaced by a δ-function interaction potential,

V (r, r′) = g δ(r− r′) (2.8)

Intuitively speaking, the wave packet of the atomic motion does not have
sufficiently high Fourier components to sample the details of the potential.
This is often referred to as pseudo-potential approximation [54]. The strength
g of this pseudo-potential can be re-expressed in terms of another quantity
called the s-wave scattering length as, which can be interpreted in terms of
the phase shift the scattered wave undergoes in the collision. For two colliding
atoms of equal mass one obtains

g = 4π~2as/m. (2.9)

The problem of the interacting Bose gas can in general not be solved ex-
actly any more. However, it has turned out that a simple mean-field solution
describes most relevant physical observations very well, except for strong in-
teractions and in low-dimensional systems. Generally, the corrections to the
non-interacting model due to weak interactions are small. Finite-size effects
and interactions shift Tc only a few percent away from the non-interacting
value given above. While the transition temperature is not affected signifi-
cantly by interactions, the shape of the condensate in the trap, its excitations
and its dynamics are altered considerably, as we will see below.
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2.5 The Gross-Pitaevskii equation

The full Hamiltonian for a weakly-interacting Bose gas is given in second
quantization by

H =

∫
d 3rΨ†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ(r)

+
1

2

∫∫
d 3r d 3r′Ψ†(r)Ψ†(r′)V (r− r′)Ψ(r′)Ψ(r) (2.10)

where the “field” operators Ψ(r) obey the canonical commutation relations for
bosons [

Ψ(r),Ψ†(r′)
]

= δ(r− r′),

[Ψ(r),Ψ(r′)] = 0,[
Ψ†(r),Ψ†(r′)

]
= 0.

(2.11)

For a condensate, Ψ(r) assumes a non-zero expectation value ψ(r) = 〈Ψ(r)〉
which acts as a complex order parameter here. It can be regarded as a macro-
scopic wavefunction of the condensate. If one writes the field operator as its
expectation value plus a fluctuation operator Ψ(r) = ψ(r) + δΨ(r), the time-
dependent Schrödinger equation for the order parameter alone leads to the
so-called Gross-Pitaevskii equation (GPE) for the condensate wavefunction [9][

− ~2

2m
∇2 + V(r) + g3D|ψ(r, t)|2

]
ψ(r, t) = i~ ∂t ψ(r, t) (2.12)

where V(r) is the external potential, which includes the lattice as well as the
trapping potential, and g3D = 4π~2as/m is the nonlinear coupling with the
s-wave scattering length as. Here, the condensate wavefunction is normalized
to the total number of particles∫

d3r |ψ(r, t)|2 =

∫
d3r n(r, t) = N. (2.13)

This is only possible in this form if the particle density falls off sufficiently
quickly for r → ∞, such that the integral exists, or correspondingly that the
condensate is confined in all three directions, which basically is the case in all
experimental realizations.
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2.6 Density profile: Thomas-Fermi approxi-

mation

In experiments one is usually in a situation of a large interaction parameter
Nas/aho because the atom number N is the range N ≈ 105-106. Under these
conditions, the kinetic energy term in the Gross-Pitaevskii equation may be
neglected except for a small region at the surface of the cloud where the order
parameter changes more rapidly across space. To good approximation, the
ground state in the trap is then given by the Thomas-Fermi approximation,
which leads to a density distribution [9]

n(~r, t = 0) = N |Φ0(~r)|2 =

{
[µ− V(~r)] /g3D V(~r) < µ
0 V(~r) ≥ µ,

(2.14)

with the chemical potential µ that is fixed by the atom number. The highest
particle density npeak occurs at the minimum of the trapping potential, which
we define as the zero point of the energy scale. Note the simple but useful
relation µ = npeak g3D. The density vanishes on and outside of the “Thomas-
Fermi surface” given by V(~r) = µ.

We can also obtain a general result on the relation between the chemical
potential and the total number of particles. Since the density (2.14) is non-
zero only inside the Thomas-Fermi surface, we only need to integrate it over
the “Thomas-Fermi volume” VTF to get the number of particles

N =

∫
VTF

d3r n(~r) = npeak VTF −
VTF

g3D

∫
VTF

d3r V(~r)∫
VTF

d3r
= VTF/g3D (µ− V ). (2.15)

Here V is the average potential inside the Thomas-Fermi volume. By definition
we get 0 < V < µ. Defining α = 1 − V /µ which depends on the actual trap
shape and lies between zero and one, we arrive at the general result

N = αµ/g3D VTF. (2.16)

Note that VTF, V , and also α (unless V is linear in µ) depend on µ.
We generally deal with a harmonic trapping potential or a potential which

can be approximated as such. In normal coordinates, with the trap frequen-
cies ωx,y,z the potential takes the form V(~r) = m/2 (ω2

x x
2+ω2

y y
2+ω2

z z
2). Thus,

the Thomas-Fermi surface is an ellipsoid with half-axes Ri = (2µ/m)1/2/ωi.
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The enclosed volume is

VTF =
4π

3
RxRyRz =

4π

3

(
2µ

m

)3/2
1

ωxωyωz
. (2.17)

The average potential becomes V = 3µ/5, and therefore α = 2/5 is a constant.
From eq. (2.16) we get N = 2/5npeak VTF or in terms of µ

N = µ5/2 8π
√

8

15m3/2 g3D

1

ωxωyωz
. (2.18)

2.7 Elementary excitations and collective modes

The elementary excitations of the condensate ground state were investigated
by Bogoliubov using a theory of small fluctuations around the ground state
and linearizing the solutions for weak excitations. The Bogoliubov excitation
spectrum of a homogenous system reads

(~ω)2 =

(
~2q2

2m

)(
~2q2

2m
+ 2gn

)
. (2.19)

This corresponds to phonon (collective) excitations ω ∝ k at low momenta and
free-particle like excitations ω ∝ k2 at large momenta. The speed of sound for
low momenta is

c =
√
gn/m. (2.20)

For the harmonically trapped system, the wavelength of low-frequency exci-
tations has a natural cutoff provided by the size of the harmonic trap. Hence
the lowest collective modes are quantized oscillation modes in the trapping
potential. Using the Thomas-Fermi density distribution

n(r, t) = npk(t)

[
1− x2

R2
x

− y2

R2
y

− z2

R2
z

]
(2.21)

small perturbations around the equilibrium lead to a simple scaling of the
cloud radii according to

Ri(t) = Ri(0) bi(t) (2.22)

and hydrodynamic equations, which can be derived from the time-dependent
Gross-Pitaevskii equation result in the equations of motion of the scaling pa-
rameters [64, 65]

b̈i =
ω2

0i

bxbybz bi
− ω2

i (t) bi. (2.23)
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Chapter 3

Fundamentals: Putting a handle
on atoms

The achievement of quantum control over positioning, motion, internal states,
and interactions of ultracold atoms involves a number of involved experimen-
tal techniques, most of which are built upon the interactions of atoms with
external fields. In order to lay the foundations for the principal functioning of
the apparatus and the experiments discussed in the later chapters, I discuss
the fundamentals of the interaction of atoms with light and magnetic fields in
this chapter as well as the properties of atoms in periodic potentials.

3.1 Atom-Light Interaction

The techniques to cool atoms to Microkelvin temperatures, to manipulate
them in optical lattices, and to detect them are fundamentally based on the
principles of light-matter interaction. Near-resonant laser light is used to cool
the atoms by the exchange of mechanical energy with photons and the dissi-
pative force resulting from this interaction, and far-resonant light is used to
provide conservative potentials with a period of a few hundred nanometer in
standing wave laser configurations, so called optical lattices. In this section, I
review the fundamentals of light-matter interaction.

Let us consider a strongly simplified atom with only two energy eigenstates
|a〉 and |b〉 of energies Ea and Eb, respectively. In an external oscillating
electric field Eext(t) that we treat classically the two-level atom is described
by the Hamiltonian

H = Hatom +Hali. (3.1)

Here, Hatom = Ea|a〉〈a| + Eb|b〉〈b| is the bare atomic Hamiltonian and Hali is
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the interaction Hamiltonian

Hali = −d̂ · E(r, t) (3.2)

with the dipole operator d̂ = −e r̂, where we have used the electric dipole and
long-wavelength approximations, which usually are excellent approximations
for optical transitions. The matrix elements of the dipole operator d vanish
between states of the same parity. The wave functions of the states of our
atom therefore have to be of opposite parity, otherwise our example would be
rather uninteresting.

In the basis of eigenstates the dipole operator becomes

d =
(
|a〉 |b〉

)( 0 dab
dba 0

)(
〈a|
〈b|

)
(3.3)

with dba ≡ 〈b|d|a〉. Note that the Hermiticity of the Hamiltonian necessitates
dba = d∗ba. This leads to the total Hamiltonian

H =

(
Ea −dab · Eext(t)

−dba · Eext(t) Eb

)
. (3.4)

For the electric field we assume a linearly polarized classical light field Eext(t) =
ε̂E0 cosωt with the polarization unit vector ε̂. Plugging that in gives

H =

(
Ea ~Ω0 cosωt

~Ω∗0 cosωt Eb

)
(3.5)

with the Rabi frequency ~Ω0 ≡ −(dab · ε̂)E0. We can split up the cosine into
two exponentials and pull out ~ to obtain

H =
~
2

(
ωa Ω0 (eiωt + e−iωt)

Ω∗0(e
iωt + e−iωt) ωb

)
. (3.6)

To diagonalize the Hamiltonian, we switch into a frame rotating at angular
velocity ω. In this frame, we obtain a time-independent term given by

Hrot =
~
2

(
0 Ω0

Ω∗0 −2δ

)
, (3.7)

where δ ≡ ω − |ωb − ωa| is the detuning from resonance. The other term
proportional to e−2ωt rotates at 2ω and for |Ω0| � ω it can safely be neglected
(“rotating-wave approximation”), as its effects average out. The eigenvalues
are given by ±~Ω/2, with the generalized Rabi frequency Ω ≡

√
Ω2

0 + δ2,
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corresponding to ac Stark shifts of the ground and excited states. In the limit
of large detuning, δ2 � Ω2

0, the ac Stark shift of the ground state is given by

∆U ' ~
Ω2

0

4δ
. (3.8)

The corresponding eigenvectors (“dressed states”) are mixtures of the orig-
inal two basis states. The populations in the two original states undergo Rabi
oscillations,

Pb(t) =

(
Ω0

Ω

)2

sin2

(
Ωt

2

)
, (3.9)

and Pa(t) = 1−Pb(t). The state dynamics can also be visualized conveniently
on the Bloch sphere [66]. From the steady-state value of Pb it is possible to
calculate the spontaneous scattering rate Γsc = Pb Γ (where Γ is the natural
line width) in the far-detuned limit δ � Ω0,Γ as

Γsc =
Ω2

0

4δ2
Γ = Γ

∆U

~δ
. (3.10)

One can derive the following important relation between the reduced dipole
matrix element D and the transition linewidth Γ (see for example Loudon [67])

Γ =
ω3

0e
2D2

3πε0~c3
. (3.11)

The saturation intensity Is of the atomic transition considered is defined as [50]

Is ≡
2π2~cΓ

3λ3
0

=
~Γω3

0

3× 22πc2
, (3.12)

where λ0 = 2πc/ω0. With the cycle-averaged intensity I = cε0|E|2/2 one
obtains

Ω0 = Γ

√
I

2Is
. (3.13)

In the above treatment we have neglected the counter-rotating term. If the
detuning becomes comparable to the atomic transition frequency, the counter-
rotating term has to be taken into account. In this case the ac Stark shift of
the ground state, or in other words the optical potential, is given by

∆U = −~Ω2
0

4

(
1

ω0 − ω
+

1

ω0 + ω

)
, (3.14)
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Figure 3.1: Energies of the ground state hyperfine levels of 87Rb as a function
of an applied static magnetic field.

and the scattering rate by

Γsc =
α3ω3Γ2

3× 8ωRydω0

(
1

ω0 − ω
+

1

ω0 + ω

)2
I

Is
(3.15)

which is equal to ΓUFOR
dip /~δ when neglecting the “counter-rotating” term.

3.2 Static external magnetic field

An important part of the experimental sequence to produce and manipulate
ultracold atomic ensembles is the trapping in inhomogeneous magnetic fields.
In order to elucidate the underlying physics, I consider the general case of an
atom with total electronic angular momentum J = L + S (L is the orbital
angular momentum and S is the spin) and nuclear spin I in a homogeneous
magnetic field B. The Hamiltonian of this system is

H = −µ ·B + AJ · I, (3.16)

with F = J + I, where A is the magnetic dipole hyperfine coupling constant,
and µ = µB/~ (gJJ + gII).

For the ground state of the experimentally relevant alkalis, which is 2S1/2,
we have L = 0 and S = 1/2, so that J can be replaced by S and gJ by
gS. In this case the Hamiltonian can be diagonalized analytically, yielding the
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so-called Breit-Rabi formula for the eigenenergies [68]

W = − ∆W

2(2I + 1)
± ∆W

2

√
1 + x2 +

2mF

I + 1/2
x+ µBgImFB (3.17)

with x = (gS − gI)µBB/∆W and ∆W = A(I + 1/2) is the zero-field hyperfine
splitting. The last term is small compared to the others and was neglected in
the original paper by Breit and Rabi.

3.3 State-Dependent Optical Potentials
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Figure 3.2: Illustration of the basic principle behind state-dependent optical
potentials. For clarity, the hyperfine structure is neglected. (a) Atoms in the
mJ = −1/2 state are not affected by σ+ light at a certain wavelength between
the D1 and D2 lines where the red and blue-detuned contributions to the light
shift cancel exactly. (b) Atoms in state mJ = +1/2, however, feel an attractive
optical potential, since only “red-detuned” intermediate states are accessible.
For σ− light, the roles of the two states are reversed, i.e. only atoms in state
mJ = +1/2 feel the optical potential (not shown).

The ability to independently control the optical potentials experienced by
atoms in different hyperfine states opens up many interesting experimental
possibilities. Here, I will focus on the implementation and the properties of
state-dependent optical potentials.

The basic idea behind state-dependent optical potentials is to choose the
wavelength λL and polarization of the trapping or lattice beam such that
there are red and blue-detuned contributions from intermediate excited states
which cancel for one state of but not for another. This concept is illustrated
in Fig. 3.2 for a simplified rubidium atom without hyperfine structure. For
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the alkali atoms, one chooses λL in between the D1 and D2 lines, such that
one is red-detuned with respect to the states in the 2P3/2 manifold and blue-
detuned with respect to 2P1/2. Now, from each of the two ground states
mJ = ±1/2 one kind of circularly polarized light (σ∓) couples to both red and
blue-detuned excited states, while the other kind (σ±) can couple only to the
mJ ′ = ±3/2 states in 2P3/2. By choosing the wavelength such that the red and
blue-detuned contributions cancel for the transitions where both are present,
one can therefore obtain a situation in which σ± light exclusively affects atoms
in the mJ = ±1/2 ground state [69–71].

In real life, the hyperfine structure splitting leads to additional complica-
tions compared to this picture, but the basic principle stays the same. A more
serious limitation of this scheme is due to the fact that the D1 and D2 lines in
87Rb are only 7 THz apart, such that one cannot arbitrarily reduce residual
spontaneous scattering, as the farthest off-resonance one can go is right in the
middle between the two lines.1 In practice, so far, we have not found heat-
ing due to spontaneous scattering to be a limiting factor in our experiments.
However, the possibility of such heating should be kept in mind.

In the following, I will outline the calculation of state-dependent optical po-
tentials for multi-level atoms, along with scattering and heating rates. After a
short discussion of Kapitza-Dirac diffraction as a quick and reliable method for
lattice depth calibration, I will present an example of measured lattice depths
as a function of polarization for the two hyperfine ground states considered in
this work.

3.3.1 Calculation of optical potentials

When an atom is put into a light field that spatially varies in polarization,
intensity, or both, the different atomic energy levels experience spatially de-
pendent light shifts, i.e. the so-called optical dipole potential. If the light field
is far off-resonant from any atomic transitions (|∆| � Γ), the level shifts can
be calculated in very good approximation by treating the atom-light interac-
tion as a perturbation to leading order [72]. Thus, for state |i〉 one obtains the
light shift

∆Ei =
∑
l 6=i

|〈l|d · E|i〉|2

Ei − El
=
∑
l 6=i

|dli · E|2

Ei − El
(3.18)

with the interaction Hint = −d · E in the electric dipole approximation, and
with the electric dipole matrix elements dli ≡ 〈l|d|i〉 = d∗il. The presence of a

1For a quick comparison, the 1064 nm light used for the optical dipole trap is about
95 THz away from the closest resonance, i.e. from the D1 line. The scattering rate drops as
1/∆2 where ∆ is the detuning.
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homogeneous magnetic guiding field that defines a quantization axis and that
lifts the residual level degeneracies via the Zeeman shift is implied. As shown
in detail in Appendix A, this eventually leads to the optical potential for state
i ∈ 2S1/2

Udip(r; i, q) =
3πc2

2

ΓD1

ω3
D1

∑
l∈ 2P1/2

∣∣cliq ∣∣2
ω − ωli

+ 2
ΓD2

ω3
D2

∑
l∈ 2P3/2

∣∣cliq ∣∣2
ω − ωli

 I(r), (3.19)

where q denotes the polarization of the light (q = ±1 for σ± polarization, q = 0
for π polarization), I(r) is the cycle-averaged intensity, ω is the frequency of the
light, and ~ωli is the energy difference between the atomic levels l and i. The
reduced dipole matrix elements have been expressed in terms of the natural
linewidths ΓD1/D2 and the transition frequencies ωD1/D2, while the factors cliq
contain the geometrical dependence in terms of Clebsch-Gordan coefficients.

Equation (3.19) can be simplified further, since ωli ≈ ωD1 for all terms in
the first sum and similarly in the second sum. This is a good approximation if
the detuning |ω−ωli| is much larger than the hyperfine splitting, which is well
satisfied for our purposes. The denominators can therefore be pulled out, the
sums performed, and with the detunings ∆D1/D2 ≡ ω−ωD1/D2 one obtains [72]

Udip(r;F,mF , q) =
πc2ΓD2

2ω3
D2

[
1− gFmF q

∆D1

+
2 + gFmF q

∆D2

]
I(r) (3.20)

where mF is the magnetic quantum number and gF is the appropriate Landé
g-factor of state i (for 87Rb we have gF = −1/2 for F = 1, and gF = +1/2
for F = 2). Here, we also made use of the fact that ΓD1/ω

3
D1 ≈ ΓD2/ω

3
D2.

This simplified form allows for more qualitative insights into the dependence
of the potential on wavelength, polarization and internal state. For example,
p ≡ gFmF q can only take five possible values for 87Rb, namely p = 0,±1/2,±1.
Accordingly there are only five different equally-spaced potential curves versus
wavelength centered around the p = 0 curve (see the thin gray curves in
Fig. 3.3). For linearly polarized light all 2S1/2 hyperfine states follow the p = 0
curve and experience identical light shifts.

For an optical lattice obtained through complete retro-reflection of an in-
coming beam of intensity Iin and wave vector kL = 2π/λL along the z direction
the resulting spatial intensity distribution is 4Iin cos2(kLz). The lattice mod-
ulation depth is thus four times as large as the single-beam light shift. In
Fig. 3.3 (a), the wavelength dependence of the optical lattice depth is shown
for the two chosen hyperfine states |a〉 = |1,−1〉 and |b〉 = |2,−2〉 as calculated
using (3.19). Note that on the scale of the plot the difference compared to the
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Figure 3.3: (a) Calculated lattice depths and (b) peak scattering rates Γpk
sc =

4Γin
sc for the two hyperfine states |a〉 = |1,−1〉 and |b〉 = |2,−2〉 (red and blue)

for σ+ and σ− polarized light (solid and dotted) as a function of wavelength
(full retro-reflection of an incoming 30 mW beam with a 1/e2-radius of 230 µm,
yielding Iin = 36.1 W/cm2). Negative depths indicate attraction to regions of
high intensity (red-detuned character), positive values indicate repulsion (blue-
detuned character). At 785.1 nm the optical potential vanishes for |b〉 atoms
in a σ+ lattice (blue square), while |a〉 atoms feel a deep lattice potential (red
circle, Va = 33.6ER). The peak scattering rates are 2.35 s−1 for |a〉, and
1.32 s−1 for |b〉 at these settings. The thin gray curves are obtained from the
simplified formula showing all five possible values of gFmF q, as discussed in
the text. The dashed line at 787.5 nm represents the center frequency between
the D1 and D2 lines.

simplified eq. (3.20) (less than 1 %) is not noticeable.

3.3.2 Scattering rates and heating

The scattering rate for a multi-level atom can be obtained by summing over
the contributions from each possible excited state similar as in the expressions
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for the dipole potential above. Recall that for a two-level atom in the far
off-resonant limit one has Γsc = ΓUdip/~∆. This can be applied to each term
in (3.20) leading to the expression

Γsc(r;F,mF , q) =
πc2ΓD2

2~ω3
D2

[
ΓD1

1− gFmF q

∆2
D1

+ ΓD2
2 + gFmF q

∆2
D2

]
I(r). (3.21)

It is interesting to note that the same expression is obtained by a more rigorous
derivation using the Kramers-Heisenberg formula [67], which involves summing
over all accessible final states. In Fig. 3.3 (b), the calculated scattering rate at
the intensity maxima of an optical lattice as a function of wavelength is shown
for the two states |a〉 and |b〉. For a certain detuning very close to halfway
between the D1 and D2 lines (∆D1 ≈ −∆D2), the scattering rate becomes
independent of the hyperfine state and the light polarization.

These residual spontaneous emission processes kick the atoms into ran-
dom directions and therefore result in a diffusion of the atomic momenta or,
in other words, heating. Moreover, fluctuations of the dipole force itself also
contribute to the overall momentum diffusion [73–75]. The momentum diffu-
sion constant Dp for a (motionless) two-level atom in the far off-resonant, low
saturation regime can be written as [75, 76]

Dp =
~2

2

3πc2Γ

2~ω3
0

Γ

∆2

[
2k2

LI(r) +
1

2
∇2I(r)

]
=

~2

2

(
2k2

L +
1

2
∇2

)
ΓTLA

sc (r)

(3.22)
where ΓTLA

sc (r) is just the local scattering rate for a two-level atom in a light
field of intensity I(r). The first term proportional to the intensity is due to
spontaneous scattering, while the second term proportional to the Laplaceian
of the intensity represents the contribution from the fluctuations of the dipole
force. The kinetic energy of an atom of mass m increases at the rate Ė =
Dp/m, also called the heating power [72]. By simply replacing the two-level
atom scattering rate in (3.22) by the one for the multi-level atom (3.21) we
obtain the heating power

Ė = ER

(
2 +

1

2k2
L

∇2

)
Γsc(r) (3.23)

with the usual recoil energy ER = ~2k2
L/2m. For a single beam (i.e. a traveling

wave) of intensity Iin the heating power is Ė = 2ERΓin
sc, since the intensity

and thus the scattering rate are spatially homogenous. Each spontaneous
scattering event thus increases the energy by 2ER, where one recoil energy is
due to spontaneous emission and the other one is due to the prior absorption
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that is not canceled by induced emission.2

Retro-reflection of the beam leads to a standing wave for the dipole po-
tential as well as for the scattering rate Γsc(r) = 4Γin

sc cos2(kLz). The peak
scattering rate at the intensity anti-nodes is thus four times as high as for the
single-beam case. If there was no contribution from the dipole force fluctu-
ations, the spatially averaged heating power (assuming a homogeneous atom
distribution) would be twice as large as for a single beam. However, the Lapla-
ceian term causes “cooling” at the anti-nodes and additional heating at the
nodes of the intensity, where the dipole force is largest. In total the heating
power becomes Ė = 4ERΓin

sc = ERΓmax
sc which actually is still twice as much

as for a single beam, but surprisingly is independent of the position in the
standing wave [75–77].

It is also noteworthy in the context of state-dependent potentials that even
when the dipole potential for a certain state vanishes does the scattering rate
remain finite. Although one would not expect the spontaneous contribution
to the heating power to vanish, it is somewhat counter-intuitive at first, that
also the contribution due to the dipole force fluctuations in a standing wave
exists, even when the potential is flat. This flatness, however, comes from
the cancellation of possibly deep red and blue-detuned lattices. The dipole
force fluctuations thus do not arise from the population fluctuations between
ground and excited states in this case, but from the population fluctuations
in between red and blue-detuned excited states.

Finally, the heating power due to momentum diffusion Ė can be translated
into an actual heating rate Ṫ [72]. Assuming thermal equilibrium, the mean
total energy per atom is a function of temperature. For example, in a three-
dimensional harmonic trap one has E = 3kBT , such that the heating rate
becomes Ṫ = Ė/3kB. Consequently, if we shine light onto an atomic cloud
sitting in a harmonic trap, the cloud’s temperature increases at a rate

Ṫ = 2ERΓsc/3kB = Γsc TR/3 (3.24)

where the recoil temperature is TR ≡ 2ER/kB. For 87Rb and 785 nm light, the
recoil temperature is about 360 nK, such that a scattering rate of 1 s−1 leads
to a temperature increase of 12 nK in 100 ms. Once the thermal energy kBT
becomes comparable to the trap depth, more and more atoms are lost from the
trap due to evaporation and the temperature ceases to increase at a constant
rate. Retro-reflection of the light to form a lattice would naively cause twice
the heating since the heating power is doubled. However, the relation between
energy and temperature would not correspond to a simple harmonic trap any

2As an aside, the spontaneous force is completely negligible compared to the dipole force
in the regime considered here [72, 75].
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Figure 3.4: Measured lattice depths in a simple retro-reflected beam config-
uration for the two states |a〉 ≡ |1,−1〉 and |b〉 ≡ |2,−2〉 as a function of the
lattice beam polarization at a given intensity and at a wavelength of 785.1 nm.
The lattice depths were obtained separately for each state from Kapitza-Dirac
diffraction patterns after a 10 µs lattice pulse. The solid lines are sinusoidal
fits [78].

more, at least along the direction of the beam. A more detailed treatment
thus seems necessary in this case.

3.3.3 Experimental Lattice Depth Determination

Experimentally determined lattice depths for the two hyperfine states |a〉 and
|b〉 are shown in Fig. 3.4 as a function of the polarization of the lattice light
at constant intensity [78]. The polarization of the incoming beam can be
adjusted through a quarter wave plate. Since the lattice is formed by simple
retro-reflection of this beam, the polarizations of the two counter-propagating
beams are identical. As expected, the lattice depths for both states are the
same for linearly polarized light, while circular polarization leads to maximally
different lattice depths for the two states considered. In accordance with the
theoretical curves in Fig. 3.3 (a), at the chosen wavelength of 785.1 nm the
potential for state |b〉 approximately vanishes3 for σ+ light while state |a〉 is at
its maximum lattice depth. Similarly, for a σ− lattice, |b〉 experiences a deep
lattice potential, while the lattice depth is minimal but non-zero for |a〉, as
expected.

3The non-zero lattice depth for |b〉 at σ+ polarization in this set of measurements is
caused mainly by an imperfect alignment of the magnetic guiding field with respect to the
lattice beam. Further details can be found in [78]. With careful alignment, the residual
lattice can be reduced down to virtually zero for all practical purposes.
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In order to experimentally determine the actual depth of the lattice poten-
tial V0 experienced by the atoms, we generally employ Kapitza-Dirac diffrac-
tion [79–81], which we have found to be quick and reliable in comparison to
other possible methods [11]. The method consists of pulsing on the optical lat-
tice onto a BEC for a short time τKD on the order of the recoil time τR ≡ h/ER.
The optical lattice acts as a grating from which the BEC is diffracted, very
much in analogy to usual diffraction of light from a material grating, just that
the roles of light and matter are interchanged. Here, the pulse duration cor-
responds to the thickness of the material grating in the optics analogy. From
the matter-wave diffraction pattern observed after time of flight, one can then
determine the modulation depth of the optical lattice.

For typical experimental parameters considered here, the mean-field inter-
action can be neglected and it suffices to treat the condensate as a homo-
geneous non-interacting matter wave ψ(z, t) evolving according to the usual
Schrödinger equation

i~ ∂t ψ =

[
− ~2

2m
∂zz + V0 sin2(kLz)

]
ψ (3.25)

for the duration of the lattice pulse.
If the pulse is sufficiently short, the spatial distribution of the atoms re-

mains essentially unchanged and the gain in kinetic energy is small. However,
the optical lattice potential imprints a periodic phase variation onto the con-
densate. This thin-grating or Raman-Nath regime is attained provided that
τKD � Tho, where Tho = τR/2

√
s (with s ≡ V0/ER) is the classical oscillation

period when approximating each lattice well by a harmonic potential. In this
regime, the kinetic energy term in (3.25) can be neglected. The time evolution
is then simply given by exp [−i (V0τKD/2~) (1− cos 2kLz)]. Use of the identity
exp(i a cosφ) =

∑
n i

nJn(a) exp(i nφ) leads to

P2n = |c2n|2 = J2
n

(
V0τKD

2~

)
(3.26)

for the population distribution of the even diffraction orders 2n, where Jn
denotes Bessel functions of the first kind. The odd orders remain unpopulated.

More generally, the mode populations can be calculated numerically by
integrating the Schrödinger equation. We can expand ψ(z, t) in terms of plane
waves propagating along z with multiples of the recoil velocity vR = ~kL/m

ψ(z, t) =
∞∑

n=−∞

cn(t) ei nkLz. (3.27)
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Figure 3.5: Example of a Kapitza-Dirac (KD) diffraction pattern as seen in
absorption imaging after time of flight. The different diffraction orders are
clearly visible. In the bottom the integrated optical density is shown. The
slight variation in the shapes of the different orders is caused by the mean-field
repulsion between the atoms that rapidly translates into kinetic energy after
release from the trap. (Here, the KD pulse is applied just before the trap is
turned off.)

In this basis, (3.25) becomes a system of coupled differential equations for the
amplitudes cn(t)

i~ ċn = ER n
2cn + V0

[
1
2
cn − 1

4
(cn+2 + cn−2)

]
. (3.28)

The initial conditions for Kapitza-Dirac diffraction of a motionless BEC are
cn(t = 0) = δn0, i.e. only the zero-momentum mode is occupied. According
to (3.28), the lattice potential only couples momentum modes that are 2~kL
apart, and the equations are symmetric under interchange of positive and
negative momenta. With the above initial conditions, the mode populations
Pn(t) = |cn(t)|2 will thus be non-zero only for n even, and the distribution
will always be symmetric P−n(t) = Pn(t). These general considerations are of
course also valid in the Raman-Nath regime. For the determination of lattice
depths we do not rely on the Raman-Nath approximation, i.e. we fit numeri-
cally integrated diffraction patterns to the experimentally obtained ones. More
details on this method can be found in our publication Ref. [81].
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3.4 Optical lattice band structure and wave

functions in terms of the Mathieu equa-

tion

When particles are confined to the periodic potential of a lattice, the usual free-
space dispersion relation E = ~2k2/2m is dramatically modified. As pointed
out by Felix Bloch and others in the early days of quantum mechanics, the
dispersion relation becomes periodic in momentum space and energy gaps
open up in the energy spectrum. In this section, I will review the fundamental
properties of single particles in a periodic potential.

We assume that the lattice potential is formed by a one-dimensional optical
standing wave, i.e. an optical lattice, which gives rise to the spatially periodic
potential (shown in Fig. 3.6)

V (x) = V0 sin2(kLx), (3.29)

with kL = 2π/λ and λ the wavelength of the light. With this potential, we
can rewrite the Schrödinger equation as a Mathieu equation (in the notation
of [82, 83])

y′′(z) + [a− 2q cos(2z)] y(z) = 0. (3.30)

Here the parameter q corresponds to the lattice depth, while a corresponds to
the energy as follows

q ≡ −s/4, (3.31)

a ≡ e− s/2 = e+ 2q (3.32)

with s ≡ V/ER and e ≡ E/ER, i.e. measuring the lattice depth and the energy
in units of the recoil energy. Length is measured in units of 1/kL = λ/2π,
and the dimensionless momentum r is measured in units of ~kL. For the
Mathieu equation exact analytical solutions exist in terms of the Mathieu
functions [82, 83].

3.4.1 Energy bands

In the reduced zone scheme, the states are labeled by a pair (n, rred) where n is
the band index and rred ∈ [−1, 1) is the quasi-momentum. In the expanded or
free scheme they are labeled, in principle, only by r ∈ R. However, for integer
values of r 6= 0 there are two states of different energy, such that a further
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Figure 3.6: (a) Sinusoidal lattice potential V (x) as created by an optical
standing wave. The dashed red curve shows the approximation by a harmonic
potential around the minimum of a single lattice well. Harmonic oscillator (ho)
levels are shown for the case of s = 40. (b) Relative energy of ho levels fitting
into a single well, as the lattice depth s is increased. The second level gets
pulled in only at s = 9, the third at s = 25. The harmonic approximation is
useful only for ho levels lying sufficiently deep in the well (Eho � V0 = sER).

distinction at these points is necessary in the expanded scheme4. The energy
bands are thus given by

e(r; s) = ar(−s/4) + s/2 r 6∈ Z (3.33)

everywhere except at the band edges.

3.4.2 Bloch wave functions

According to Bloch’s theorem, the wave functions of a particle in a general
periodic potential can be written in the form

ϕr(z) = ei rzur(z) with ur(z + 2π) = ur(z). (3.34)

Note that this does not mean that an arbitrary solution to the Schrödinger
equation is of this form, with counter-examples being the even and odd super-
positions of two Bloch waves. For the a sinusodial potential, they are given
in terms of the even and odd solutions MathieuC[a, q, z] and MathieuS[a,

q, z] provided by Mathematica as follows (where C and S basically take the

4This distinction is provided by ar(q) and br(q), in Mathematica called
MathieuCharacteristicA and ...B, respectively. For given q, these functions coincide
everywhere except at r ∈ Z.
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Figure 3.7: Allowed energy bands E(k) of solutions propagating with wave
vector k, here at s = 5. Shown are the reduced zone scheme (first Brillouin
zone only, black), the extended zone scheme (blue, relevant for adiabatic lattice
depth changes, cf. band map) and the repeated zone scheme (gray). The band
edges are marked by red dots in the extended scheme and orange dots in the
reduced scheme.

role of generalized cosine and sine functions):

ϕ±r(z) = MathieuC [ar(q), q, z]± iMathieuS [ar(q), q, z] . (3.35)

In the notation of Ref. [82, 83] this is

ϕ±r(z) = cer(z, q)± i ser(z, q). (3.36)

The sign determines in which direction the solution moves completely analo-
gous to a plane wave, to which it reduces for q ∝ s = 0, i.e. cer(z, 0) = cos(rz).

3.4.3 Localized basis states – Wannier functions

Localized Wannier functions can be obtained as a superposition of the delocal-
ized Bloch functions. For deep lattices the Wannier functions can be approx-
imated by Gaussians, just as each optical lattice well can be approximated
by a harmonic potential of the form mω2z2/2 (see Fig. 3.9). The trapping
frequency (respectively the distance between the harmonic oscillator levels)
increases with the lattice depth as

~ω = 2ER
√
s. (3.37)
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Figure 3.8: The five lowest bands, i.e. the energy ranges where propagating
solutions exist, as a function of lattice depth s (shaded light blue). In the gaps
between these regions only localized and evanescent wave solutions exist. As
the lattice depth is increased, the bands flatten out and approach the harmonic
oscillator levels of the single well harmonic approximation shown as dashed red
curves. The dash-dotted blue line shows the modulation depth s of the lattice.
Naturally, the states above have predominantly free particle character, while
they have the character of bound states below.

The size of the wave function on a single site is then just the harmonic oscillator
length

σ =

√
~
mω

=
λ

2π
s−1/4. (3.38)
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Figure 3.9: Ground state Wannier function |w0(x)|2 localized at a single
site in a lattice potential V (x) of depth s = 50. For comparison the density
distribution of the delocalized Bloch function |ψ(x)|2 is shown as dashed line.

3.5 Strongly-correlated atoms and the Bose-

Hubbard model

In second-quantized notation, the full Hamiltonian for a trapped Bose gas in
a lattice potential interacting via an effective contact interaction is given by

H =

∫
d 3rΨ†(r)

[
− ~2

2m
∇2 + Vlat(r) + Vtrap(r)

]
Ψ(r)

+
1

2

4π~2as
m

∫
d 3rΨ†(r)Ψ†(r)Ψ(r)Ψ(r).

(3.39)

The potentials of the optical lattice and the external trap are typically of
the forms Vlat(r) = V0

[
sin2(kLx) + sin2(kLy) + sin2(kLz)

]
for a simple-cubic

three-dimensional lattice, and Vtrap(r) = mω2r2/2 for an isotropic harmonic
trap, respectively.

We now expand the field operators Ψ(r) that create or destroy an atom
at the point r in terms of the operators bni that create or destroy an atom of
the band n that is localized at lattice site i, described by the Wannier wave
function ψ(r) = w(n)(r− ri) = w

(n)
i (r). Expanding

Ψ(r) =
∑
i

w(0)(r− ri) b0i (3.40)
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into the lowest band5 (in the following b0i ≡ bi), we obtain the Hamiltonian in
the Wannier basis

H = −
∑
i,j

tij b
†
ibj +

∑
i,j

Vij b
†
ibj +

1

2

∑
i,j,k,l

Uijkl b
†
ibjb

†
kbl (3.41)

with the tunneling matrix elements tij for tunneling from site i to site j, the
matrix elements Vij from the trapping potential that leads to an on-site energy
offset, but may also induce directional tunneling (e.g. for a potential gradient),
and the general interaction matrix elements Uijkl involving four lattice sites.
The matrix elements introduced in (3.41) are given by

tij = −
∫
d 3r w∗i (r)

[
− ~2

2m
∇2 + Vlat(r)

]
wj(r), (3.42)

Vij =

∫
d 3r w∗i (r)Vtrap(r)wj(r), (3.43)

Uijkl =
4π~2as
m

∫
d 3r w∗i (r)w∗j (r)wk(r)wl(r). (3.44)

We note that the nth-nearest neighbor tunneling matrix elements ti,i+n can
alternatively be obtained as the Fourier coefficients of the dispersion relation
in the lattice. In figure 3.10 we show a comparison of the different order
tunneling terms for different lattice depths of the optical lattice. For large
lattice depths, higher order tunneling is small, such that a simple nearest-
neighbor-tunneling tight-binding model is well applicable.

As shown by Jaksch et al. in 1998 [14], the full Hamiltonian (3.41) can be
significantly simplified yielding the well-known Bose-Hubbard model (BHM)
under certain conditions that are easily realizable with ultracold atoms in
optical lattices. The Bose-Hubbard model had been used before to describe
Josephson junction arrays as realized by superfluid Helium-4 in porous media,
for example. Since porous media are irregular structures, early theoretical
attention had been focused on the more involved disordered case [84]. The
Bose-Hubbard model Hamiltonian with an external trapping potential reads

HBHM = −t
∑
〈ij〉

(
b†ibj + b†jbi

)
+

1

2
U
∑
i

ni(ni − 1) +
∑
i

Vi ni (3.45)

5In order to leave the Hamiltonian unchanged, we should use the full expansion including
higher Wannier levels or bands Ψ(r) =

∑
i,n w

(i)(r − ri) bni. However, this would only
complicate the notation, and is not necessary for our purposes. One should keep in mind,
though, that this projection of H onto the lowest band technically is valid only at very low
energies.
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Figure 3.10: (a) Size of the tunneling matrix elements as a function of s,
calculated as Fourier coefficients of the dispersion relation of the lowest band.
The higher-order matrix elements becoming small corresponds to the band
becoming approximately sinusoidal. Then, the nearest neighbor (nn) tunneling
t approaches 1/4 of the bandwidth, shown as dashed grey line. (b) Magnitude
of higher-order tunneling matrix elements |tn| compared to nearest neighbor
tunneling t. (nnn: next nearest neighbor).

where 〈ij〉 denotes a sum over nearest neighbor links between sites i and j
(here the link 〈12〉 is the same as the link 〈21〉, these are undirected links, and
thus each link appears only once in the sum; note that other conventions are
also used in the literature), ni ≡ b†ibi is the number operator at site i, t is the
nearest neighbor tunneling matrix element, U = g

∫
d 3r |w(r)|4 is the on-site

repulsion with g = 4π~2as/m, and Vi =
∫
d 3r |wi(r)|2 Vtrap(r) is the mean

external potential at site i. In order for ultracold atoms in optical lattices
to behave according to the BHM (3.45), the following conditions have to be
fulfilled:

� nearest-neighbor tunneling has to dominate,

� off-site interactions have to be negligible, only on-site interactions should
be sizeable (this and the previous condition require aho � λL/2),

� the external potential has to change sufficiently slowly on the length scale
of the lattice spacing, such that it does not induce tunneling between
sites,

� only the lowest band should play a role, excited states should not be
populated, the temperature therefore has to be sufficiently close to zero
(we have already implied this above by projecting onto the lowest band).

Even without an external potential (Vi = 0) the BHM cannot be solved analyt-
ically for arbitrary parameter values. One therefore has to resort to analytical
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approximations or numerical methods such as exact diagonalization of small
systems using the Lanczos algorithm or the increasingly powerful quantum
Monte-Carlo (QMC) methods. However, in the two limiting cases of negligi-
ble tunneling and of negligible on-site repulsion, HBHM can be diagonalized
almost trivially, as discussed in the following. These solutions can then be
used as starting points for perturbation theory.

3.5.1 Exact solutions for special cases

Negligible tunneling (t� U)

In this case (t = 0), the Hamiltonian reduces to the on-site repulsion part,
and since the sites do not communicate with each other any more, it can be
written as a sum over single site Hamiltonians Hi

Ht=0 =
1

2
U
∑
i

ni(ni − 1) +
∑
i

Vi ni =
∑
i

Hi (3.46)

with the single-site Hamiltonians

Hi =
1

2
Uni(ni − 1) + Vi ni. (3.47)

The Hamiltonians are already diagonal in an occupation number basis |ni〉 =(
b†i

)ni

|0〉 with ni = 0, 1, 2, . . .. The Hamiltonian summed over all sites is

diagonal in the basis |n0, n1, . . . , nM〉 =
∏M

i=0

(
b†i

)ni

|0〉.

Negligible on-site interaction (U � t)

When the on-site interaction is turned off (U = 0), we have only the kinetic
energy term and the external potential

HU=0 = −t
∑
〈ij〉

(
b†ibj + b†jbi

)
+
∑
i

Vi ni. (3.48)

For a vanishing external potential this is just a tight-binding Hamiltonian, that
can be diagonalized by simply going over to momentum space via a Fourier
expansion

bi =
1√
N

∑
k

bk e(ik · ri). (3.49)
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Figure 3.11: (a) Phase diagram of the Bose-Hubbard model at T = 0 ac-
cording to the decoupling mean-field approach. The blue shaded regions are
Mott insulating with vanishing compressibility and with the atom number per
site fixed to an integer. The red dots indicate the critical points at the tips
of the Mott lobes. The blue open square indicates the position of the n = 1
Mott lobe in 3D determined by quantum Monte-Carlo calculations [85]. (b)
Atom number per site along the dashed line in (a). Blue: Total atom number.
The integer filling within the Mott lobes can clearly be seen. Red: Expectation
value of ψ2 which gives the number of condensed atoms per site. Green: The
difference between total and condensed atom number per site, i.e. the number
of quantum depleted atoms per site. It coincides with the total atom number
only in the Mott insulating regions. Although the condensate fraction is small
in between the lobes, the whole system still shows a superfluid response there
(similar to the situation in Helium-4 at T = 0, which has a superfluid fraction
of 100%, while the condensate fraction is only about 10%).

The result is
HU=0 =

∑
k

ε(k)nk (3.50)

with the dispersion relation ε(k) = −2t cos(ka).

3.5.2 Mean-field treatment and T = 0 phase diagram

Using a decoupling mean-field approach [86] for the tunneling term, one can
determine a phase diagram of the BHM. Essentially, we can write the creation
and destruction operators in the kinetic energy term as a sum of a mean value
plus a fluctuation operator, A = 〈A〉 + ∆A. Neglecting terms of higher order
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than linear and reexpressing ∆A as A− 〈A〉 again, we obtain

b†ibj ≈ 〈b
†
i〉bj + b†i〈bj〉 − 〈b

†
i〉〈bj〉 = ψ

(
bj + b†i

)
− ψ2. (3.51)

Assuming a homogeneous system, the “mean-field” 〈bi〉 = ψ has the same
value on each site, and we choose it to be real. It essentially represents the
condensate density. For given parameters, we now have to determine the value
of ψ that minimizes the system’s energy. In this approach, all lattice sites have
become equal, such that it is enough to look at a single site with the effective
Hamiltonian

HMF = −zt
(
b+ b†

)
ψ + ztψ2 +

U

2
n(n− 1)− µn, (3.52)

where z is the number of nearest neighbors (z = 2d for a cubic lattice in d
dimensions). This Hamiltonian can now be diagonalized numerically, yielding
the lowest energy for given parameters t, U, z, µ, ψ. Alternatively, one can
start from the eigenstates in the t = 0 limit and treat the first term in second-
order perturbation theory, which leads to analytical forms of the Mott lobe
boundaries which differ from the numerical values only by a few percent,

B(x) =
(x− bxc) (dxe − x)

1 + x
(3.53)

where x ≡ µ/U , B ≡ t/U , and bxc and dxe denote the floor and ceiling
functions, respectively.

Figure 3.11 (a) shows the T = 0 phase diagram, while Fig. 3.11 (b) shows
the total number of atoms per site in a cut at constant zt = 0.08 as determined
using exact diagonalization of the mean-field Hamiltonian, and then using

ntot = −∂〈HMF(ψmin)〉
∂µ

. (3.54)

Also shown is the order parameter n0 = ψ2, which corresponds to the number
of condensed atoms per sites, and the resulting number of quantum-depleted
atoms per site ntot − n0.

Note that the mean-field treatment is most accurate in infinite dimensions,
so significant abberations from the exact phase boundaries are expected in one
and two dimensions, as verified by QMC calculations, showing that the lobes
get pointed tips extending much further out. The n = 1 Mott lobe in three
dimensions has also been extensively studied for finite temperatures using a
numerically exact QMC method [85] (with “numerically exact” meaning that
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Figure 3.12: Shell structure in an isotropic harmonic trap Vtrap(r) =
mω2r2/2. The dashed line is the local chemical potential µloc(r) = µ−Vtrap(r).
Here, zt = 0.08 and µ/U = 1.5 is chosen such that in the trap center we are in
the middle of the n = 2 Mott lobe (cf. Fig. 3.11). The n = 2 Mott plateau in
the center is surrounded by a superfluid shell, an n = 1 Mott-insulating shell,
and another superfluid shell at the edge.

no uncontrolled approximations have been made and the values obtained can,
in principle, be made as close to the exact values as desired given enough
computing time). From this study, the tip of the Mott lobe is located at
(U/t)c = 29.34(2) or (t/U)c = 0.03408(2), as indicated in the figure. To
date, much more elaborate versions of the mean-field approach such as dy-
namical mean-field theory which incorporates site-dependent potentials have
been applied, for example, to the disordered BHM [29], and to two-component
mixtures [87].

35



Chapter 4

Experimental Setup

In this chapter I will discuss our newly constructed apparatus for producing
magnetically and optically-trapped condensates in a moving-coil transporter
scheme [88]. A particularly attractive feature of our apparatus, that reduces
the overall complexity of the design, is that the movable quadrupole coils
are also used as an essential part of the final magnetic trap, the “McTOP”
trap, which belongs to the family of time-averaged orbital potential (TOP)
traps [89]. As a stand-alone device, this trap reliably produces condensates
with minimal technical complexity. In experiments with optically-trapped
Bose-Einstein condensates, the quadrupole coils can be retracted before quan-
tum degeneracy is reached, providing large optical access. The apparatus is
well-suited for experiments with optical lattices, as demonstrated by observ-
ing the superfluid-to-Mott insulator transition. This chapter is an extended
version of our publication Ref. [90].

4.1 Overview of our BEC machine

Our moving-coil transporter apparatus is illustrated in figure 4.1. A cylindrical
glass vapor cell is connected to a UHV chamber with an attached small quartz
glass science cell (cf. also figure 4.5) through a differential pumping tube.
In the vapor cell, we typically collect 7 × 109 atoms in a standard six-beam
87Rb MOT, making use of light induced atom desorption (LIAD) [92–94] to
temporarily enhance the loading rate. After an 8 ms molasses phase that
lowers the temperature to about 25 µK, the atoms are optically pumped to
the |F = 1,mF = −1〉 hyperfine ground state, and subsequently caught in a
magnetic quadrupole trap using the same coil pair as for the MOT at an axial
field gradient of B′z = 100 G/cm, yielding 2.2× 109 trapped atoms at 150 µK.

The quadrupole coils are mounted on a mechanical translation stage assem-
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Figure 4.1: Transporter apparatus. The vapor cell is made from a 5.7 cm-
diameter Pyrex tube and is connected through valves with an ion pump and a
rubidium reservoir (not shown), maintaining a rubidium background pressure
of several 10−9 torr. A 28 cm-long differential pumping tube of 1 cm inner di-
ameter connects the vapor cell to the UHV chamber and the attached science
cell, which are pumped down to less than 10−11 torr by an ion pump in combi-
nation with a titanium sublimation pump (not shown). The quadrupole coils
(shown in MOT position ‘a’) are mounted on an aluminum holder (sliced to
reduce eddy currents) that sits on two orthogonally stacked translation stages
(Parker Daedal 404XR) (for details see [91]). The kink in the translation path
protects the science cell from fast ballistic atoms escaping from the vapor cell,
and it enhances optical access to the condensate along the x-axis. A small gate
valve located midway in the pumping tube allows to completely disconnect the
two vacuum regions for servicing.

bly [91], which is used to move the magnetically trapped cloud into the science
cell. This is done as quickly as possible (a = 4.5 m/s2, vmax = 0.94 m/s) in
order to minimize losses due to collisions with background gas atoms in the
vapor cell. The quadrupole trap is simultaneously compressed to its final value
of B′z = 350 G/cm within 150 ms before the cloud reaches the pumping tube.
This adiabatically heats up the cloud to 450 µK. We have confirmed that non-
adiabatic heating during the motion amounts to less than 10 µK. A detailed
study of the transfer in terms of atom number losses and heating can be found
in [95].

Once the cloud reaches the UHV chamber ‘b’, where the measured lifetime
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exceeds 150 s, the transporter slows down and proceeds along a kinked path
(a = 0.5 m/s2, vmax = 0.18 m/s). After a total travel time of 3 s and a covered
distance of 66 cm, about 1.6× 109 atoms, or 75% of the atoms initially caught
(see also [95, 96]), arrive in the science cell ‘c’, where they are evaporatively
cooled as discussed in section 4.8.1. We attribute the loss of atoms during the
motion to background gas collisions while moving out of the vapor cell, and
to a possible shaving off of hot atoms on the walls of the differential pumping
tube.

By performing the final evaporation in an optical trap, it is possible to
easily use the TOP trap for optical lattice experiments, thus avoiding the
usual drawback of TOP traps: atomic micromotion [97] can lead to strong
heating due to an oscillatory motion of the atoms relative to the lattice at the
frequency of the rotating bias field [98].

4.2 Cooling and Imaging Laser System

Our laser setup, shown schematically in Fig. 4.4, is comparatively simple. All
the light used for laser-cooling and imaging is derived from two commercial
external cavity diode lasers (ECDLs). Both are locked to atomic transitions
using polarization (saturation) spectroscopy [99–101], which directly provides
an error signal that can be used for locking without the need for effect modula-
tion or a Pound-Drever-Hall scheme. The cycling light along with the imaging
and depump light is generated by a Toptica DL pro ECDL with 60 mW at
780 nm. A tapered amplifier (Toptica BoosTA) provides the necessary power
for the MOT and molasses cycling light.1

A small fraction of the light is diverted for spectroscopy. The light forked off
to lock the lasers to atomic transitions is delivered to the spectroscopy setups
via PM fibers. The polarization spectroscopy cells are relatively sensitive to
temperature changes, vibrations and magnetic field fluctuations, so that it
proved advantageous for stability to place them not directly on the laser table,
but into light tight boxes away from the table.

Most beams are coupled into polarization-maintaining fibers which then
deliver the light to their destinations. Only the MOT repump and depump

1As a historical aside, in the initial stages of the experiment we were struggling with
a commercially available 1W tapered diode laser from a competitor. That laser proved
to have insufficient frequency stability for reliable absorption imaging (see [95]), and was
generally plagued by bad thermal behavior, drifting and several spontaneous laser diode
deaths. We were thus forced to image our first condensates on the repumping transition
which is not particularly effective, as it is not closed. The reliability of the machine increased
considerably after replacing this laser by a DL pro-BoosTA combination.
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Figure 4.2: Schematic illustration of the steps to BEC in our apparatus.
In the room temperature vapor cell, a MOT captures and cools an atomic
cloud to µK temperatures. A short optical molasses phase further reduces the
temperature, before all laser-light is extinguished and the magnetic quadrupole
trap (QPMT) is rapidly turned on to catch the cloud of cold atoms. The
magnetic coils of the quadrupole trap along with the cold atoms trapped in it
are then quickly moved to the science cell where the ultrahigh vacuum allows for
trap lifetimes sufficiently long for evaporative cooling. As evaporative cooling is
more efficient in stiffer traps, the first part of the rf-induced forced evaporation
is done in the linear potential of the QPMT. Just before losses due to Majorana
spin flips at the field zero at the trap center set in, the trap is converted to
TOP trap by turning a the rotating bias field, yielding a harmonic potential.
Evaporative cooling continues in the TOP trap either until condensation sets
in which provides us with a magnetically trapped BEC in the |1,−1〉 hyperfine
state. In the other path taken for our optical lattice experiments, evaporation
in the TOP trap is stopped just before condensation sets in. The ultracold
thermal cloud is then transferred into a crossed optical dipole trap (XODT),
where the final evaporation down to an optically trapped BEC is performed by
lowering the trap depth. Although approximately harmonic at the trap bottom
the potential in the XODT is anharmonic when moving away relatively little
from the trap bottom compared to the TOP trap, especially along the direction
of gravity.

beams, which are relatively insensitive to alignment are delivered to the vapor
cell as free-space beams (in this case, more power is more important than
pointing stability).
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For the imaging setup, we took care that the imaging beam paths are
mechanically as rigid as possible, such that fringes in the illumination caused
by dust and other artifacts do not move significantly between the absorption
image and the illumination reference image, greatly improving the quality of
our absorption images.

� Acousto-optical modulators are used to rapidly (on the time scale of a
few microseconds) control the beam intensity and to shift the frequency
of the light.

� Cycler locked to less than 500 kHz using grating and diode current
feedback, 187 MHz below the F = 2 → F ′ = 3 cycling transition
(cf. Fig. 4.3).

� Repumper locked (via grating feedback only) to 80 MHz below the F =
1→ F ′ = 2 transition

� The depump beam (F = 2 → F ′ = 2) fulfills essentially the opposite
role of the repumper by removing all atoms from the cycling transition
and accumulating them in the F = 1 ground state. (It also can act
to partially close the 1 → 2 transition, e.g. for imaging) This is used to
optically pump the laser-cooled cloud into the F = 1 state before loading
it into the magnetic quadrupole trap.

� The power behind the MOT fiber is regulated via a feedback loop that
controls how much light the AOM diffracts, very similar to the lattice
beams.

� A double-pass AOM configurations for the cycling light which allows for
reaching the depump transition with simple 80 MHz AOMs (3 × 80 =
240 MHz) and allows for a larger accessible detuning range of the cycling
light (the single-pass AOM frequency change also affects the deflection
angle of the light, so in order to cancel this effect a back-reflected double
pass configuration is necessary).

4.3 Magnetic Traps and Transporter

4.3.1 Movable Quadrupole Coil Pair

Each of the water-cooled quadrupole coils consists of 33 turns of 1/4 inch-
diameter coated hollow copper tubing. At a current of 425 A, the quadrupole
coils (L = 90 µH) produce an axial field gradient of B′z = 350 G/cm , which
can be switched off completely within less than 1 ms using an IGBT.
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Figure 4.3: Relevant level-structure of rubidium-87 and transitions used for
laser-cooling and imaging (to scale, the fine-structure manifolds are magnified
by different factors to show the hyperfine structure).

4.3.2 Time-averaged Orbiting Potential Trap

Instead of producing the condensate in a separate Ioffe-Pritchard trap, as
generally found in transporter apparatus based on [88], we use the movable
quadrupole coils as an integral part of the final magnetic trap. This could be
done, in principle, by realizing either a TOP trap [89] or a QUIC trap [102].
For the latter, however, the trap bottom depends on the delicate cancelation
of the much larger fields of the quadrupole coils and the Ioffe coil, making the
trap very sensitive to fluctuations of their relative positions.

For a TOP trap, the trap bottom is solely determined by the magnitude B0

of the rotating bias field. It is therefore inherently insensitive to the relative
positioning of the coils provided that the bias field is sufficiently homogeneous.
With the bias field rotating in the xy-plane, the time-averaged magnetic po-
tential at the center of the trap is given by

V (ρ, z) = µB0 +
1

2
mω2

⊥ ρ
2 +

1

2
mω2

z z
2 (ρ, z � ρ0). (4.1)
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Figure 4.4: Schematic laser setup for laser-cooling and imaging (folding mir-
rors and components for beam shaping such as fiber coupling lenses are omitted
for clarity). Also shown is a spectroscopy setup and an experimental polariza-
tion spectroscopy signal when scanning over the transitions involving the 87Rb
F = 2 level. The largest amplitude line is the F = 2 → F ′ = 3 cycling
transition which is the lock-point for the cycling laser (see also Fig. 4.3).

Here, m denotes the atomic mass, µ the magnetic moment, and ρ0 = B0/B
′
⊥ is

the radius of the “circle-of-death” on which the field-zero is moving [89], where
B′⊥ = B′z/2 is the radial quadrupole field gradient. The radial and axial trap
frequencies are ω⊥ = B′⊥(µ/2mB0)

1/2 and ωz =
√

8 ω⊥, respectively. A further
advantage of a TOP trap is that magnetic field fluctuations on time scales
much slower than the trap frequencies do not affect the trap bottom, unlike
for dc magnetic traps. Our “moving-coil TOP trap” (McTOP) is formed by
combining the movable quadrupole coils with stationary bias-field coils at the
science cell, as illustrated in figure 4.5. We note that a similar strategy has
been used in [103] in conjunction with a magnetic waveguide.
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Figure 4.5: Moving-coil TOP trap configuration (McTOP) around the sci-
ence cell. The rectangular bias-field coils have dimensions of 56 mm×37 mm
(inner coils) and 54 mm×54 mm (outer coils), and a center-to-center spacing
of 25.5 mm and 29.5 mm, respectively. They are tightly sandwiched between
the movable quadrupole coils used for transport (6.0 cm vertical clearance),
which each have an inner (outer) diameter of 4.4 cm (11.5 cm) and a height of
4.0 cm. The science cell is a small quartz glass cell with inner dimensions of
10× 20×45 mm3 and 1.25 mm wall thickness, which is fused to a glass-to-metal
adapter (not shown). Also sketched are the laser beams forming the crossed
optical dipole trap.

Bias-field coils

The bias-field coils are designed to provide a maximally homogeneous bias field,
while minimally obstructing the optical access to the trap center for the given
science cell geometry, as shown in figure 4.5. The outer Bx (inner By) coils each
consist of 25 (20) turns of 24 AWG (0.5 mm-diameter) magnet wire and are
wound onto a stiff fiberglass holder structure. Each coil pair produces a field
of 7.5 G/A at the center of the trap with a simulated field inhomogeneity of
less than ±3×10−4 within a distance of 1 mm from the center. The air-cooled
coils can thermally withstand ac currents of 8 A amplitude for the duration
of the evaporation, corresponding to a 60 G bias field and a circle-of-death
radius ρ0 = 3 mm at the maximum quadrupole field.
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Figure 4.6: Closed-loop bias coil driving circuit (shown for one coil pair). An
audio power amplifier (PA) resonantly drives the coils at 10 kHz. The coil cur-
rent is sensed by a closed-loop Hall-effect current sensor (CS) whose output is
converted into a dc voltage Vact, corresponding to the amplitude of the ac cur-
rent, by an rms-to-dc converter which determines the regulation bandwidth of
about 200 Hz. The error signal Verr = Vset−Vact is fed into an op-amp integra-
tor that acts as a PI-controller and adjusts the gain of the voltage-controlled
amplifier (VCA) to counteract any deviations from the desired amplitude Vset.
The ac current can be switched off rapidly with an analog switch. A bias-T
allows dc currents to be run through the coils independent of the ac operation,
e.g. for earth-field compensation.

AC bias-field coil drivers

To drive the bias-field coils, we use an 800 W audio power amplifier (PA). For
each coil pair, the impedance at the 10 kHz driving frequency is minimized
down to the ohmic resistance by canceling the inductance with a matching
capacitor. The measured inductance of the outer (inner) coil pair is 190 µH
(110 µH). The PA can easily supply the ac currents for a 60 G bias field directly
into the resulting loads of ∼ 1 Ω, without the need for step-up transformers.
The amplitude of the ac current through each coil pair is actively stabilized
to within ∼ 10−4 using the circuit outlined in figure 4.6. The regulation
bandwidth of about 200 Hz is more than sufficient for compensating thermal
drifts in the coil resistance 2. The current can be switched off within less than
1 ms limited by the quality factor of the matched coil pair.

2An alternative, fast feedback scheme has been described in [104], where the focus is
on reducing current noise to improve the coherence time for condensate interferometry in a
special TOP waveguide [103].
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Figure 4.7: Illustration of the dipole trap and lattice beam configuration with
respect to the science cell. The two linearly polarized, orthogonal 1064 nm
beams in the xy-plane (red) form a crossed optical dipole trap. These two
beams can be continuously converted into lattice beams by turning on a retro-
reflected beam using a double AOM setup shown in Fig. 4.13. Along the vertical
z-axis there is a third state-independent 1064 nm lattice beam, as well as a cir-
cularly polarized 785 nm lattice beam that creates a state-dependent optical
lattice (orange). The vertical lattices are obtained by simple retro-reflection
with a mirror. When using the state-dependent lattice, a small magnetic guid-
ing field is present along the vertical direction. Absorption imaging of the
atoms can be performed along both horizontal beam axes.

4.4 Optical dipole trap

The focus of a red-detuned Gaussian beam constitutes the simplest optical
trap. The optical dipole potential is essentially proportional to the intensity,
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which for a Gaussian beam is given by

I(ρ, z) =
2P

πw2(z)
e−2ρ2/w2(z) (4.2)

where P is the beam power, and w(z) = w0(1 + z2/z2
R)1/2 is the 1/e2-radius

of the beam, w0 is the beam waist, i.e. the 1/e2-radius at the focus, and
zR = πw2

0/λ is the Rayleigh range.
The potential can be expanded around the minimum which yields the har-

monic trap frequencies ωz and ωρ. Note that gravity displaces the trap mini-
mum below the point of maximum intensity, and reduces the trap frequency
along the vertical direction. Further, there is a critical potential depth below
which the trap cannot support the atoms against gravity. The confinement
along the beam axis is typically very weak. This can be overcome by adding
a second beam perpendicular to the first, thus forming a crossed-beam optical
dipole trap.

The beams of our crossed optical dipole trap (cf. figure 4.7) have a 1/e2

radius of ∼ 135 µm and a combined power of 3 W. They are derived from a
single-frequency 1064 nm ytterbium fiber laser (IPG YLR LP-SF series) with
a relative frequency offset of 20 MHz to average out interference effects. The
maximum depth of the optical trap, including gravity, is 6 µK in the horizontal
and 1 µK in the vertical direction, which allows for efficient gravity-assisted
evaporation of atomic clouds.

4.5 State-dependent lattice setup

The 785 nm light for the state-dependent optical lattice potential is derived
from a Coherent 899 Titanium-Sapphire ring laser that is pumped by a 10 W
diode-pumped solid-state laser Coherent Verdi V10 at 532 nm. More details
about this laser setup, e.g. a measurement of its line-width by heterodyning
it with our cycling laser can be found in [78]. After passing trough an AOM
for fast intensity control and a shutter, the light is delivered to the experiment
via a polarization-maintaining optical fiber. Behind the fiber, which is also
used to provide a clean spatial mode, the polarization is cleaned up with a
polarizing beam splitter cube, part of the light is picked up onto a photodiode
for intensity stabilization via a PID-controller loop, and the beam is shaped
and delivered to the science cell. The polarization can be adjusted manually
via a quarter-wave plate situated directly before the beam enters the science
cell.
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4.6 RF Setup

The setup for the generation of radio-frequency radiation at the position of
the atoms is described in detail in [96]. It is used for the forced evaporation in
the magnetic quadrupole and TOP traps. Once in optical trap, it is also used
for hyperfine state manipulation within the hyperfine state manifolds and for
combined microwave and rf two-photon transitions.

4.7 Microwave Setup for Hyperfine State Ma-

nipulation

4.7.1 Microwave Generation

The experimental setup for the generation and delivery of microwave radiation
to the atoms in the science cell is shown schematically in Fig. 4.8. In the
following, I will briefly describe the functions and properties of the individual
components.

Microwave synthesizer

The microwave carrier signal is produced by an ultra-low-noise frequency syn-
thesizer module (Microsource SNP-0608-520-02) that is locked to an external
rubidium frequency standard (SRS SIM 940). The phase noise performance of
the synthesizer module is comparable to high-end microwave generators (e.g.
-104 dBc/Hz at 1 kHz away from carrier), but comes at a fraction of the price.
The carrier frequency fc can be programmed via a serial port to anywhere be-
tween 6 and 8 GHz with a resolution of 1 Hz. For the experiments presented
in this thesis, the carrier was typically set to fc = 6827 MHz.

Mixer and IF modulation signal

In order to achieve fast frequency and amplitude control of the microwave
signal, we use a quadrature double-balanced diode mixer (Marki IQ-4509L)
to modulate a so-called intermediate frequency (IF) signal fmod onto the mi-
crowave carrier. This quadrature (or IQ) mixer in principle allows for extensive
control of the amplitude, frequency and phase of the microwave signal with an
IF signal bandwidth of up to 500 MHz, if both the in-phase (I) and quadra-
ture (Q) ports are driven separately from a two-channel arbitrary waveform
generator. So far, however, we use a simple single-sideband scheme, by feeding
the two ports with the same modulation signal, but phase-shifted by 90◦ for
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Figure 4.8: Schematic illustration of the experimental setup for the generation
and delivery of microwave radiation to the atoms in the science cell.

the Q-port. This is done with a 90◦ power splitter (Mini-Circuits PSCQ-2-8),
which limits the modulation signal frequency to a range from 2 to 8 MHz.
The microwave signal thus can be quickly adjusted within the frequency range
fc + 5± 3 MHz. Despite being rather narrow, this “instantaneous bandwidth”
of 6 MHz has proven sufficient for the small magnetic fields at which we have
been working so far, and at which the Zeeman splitting is less than a few MHz.
Also, to drive transitions at higher magnetic fields, the carrier frequency can
be reprogrammed easily within about 25 ms to center the 6 MHz band around
the desired frequency.

With this configuration of the IQ mixer, the IF signal amplitude controls
the upper side band (USB) fc + fmod, while the lower side band fc − fmod is
rejected by about 33 dB in comparison to the USB. The carrier feed-through is
constant and suppressed by about 30 dB. At high modulation signal power, the
nonlinear characteristics of the diode mixer become apparent with the power
in higher and lower order sidebands growing at the cost of the USB.

The modulation signal fmod is generated by an ordinary function generator
(usuallly a Tektronix AFG 3021B) that can be programmed via GPIB. For
simple pulse shaping we employ an RF switch (Mini-Circuits ZX80-DR230)
providing about 90 dB isolation when off. The rise and fall times are 1 µs and
1.6 µs, respectively.

With the current, low IF frequencies the use of a narrow-band filter after
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Figure 4.9: Superposition of absorption images taken at different times of
flight (TOFs) 2 ms apart after a BEC mixture of the |1,−1〉 and |2,−2〉 hy-
perfine states is released from the trap. The yellow shading indicates the time
during which a magnetic field gradient is applied along the horizontal axis.
The gradient pulse accelerates the two different components in opposite direc-
tions due to their different magnetic moments, which leads to spatial separation
during TOF.

the mixer to remove the residual carrier and undesired higher order sideband
signals is not possible. They are thus also getting amplified in the follow-
ing amplifier stages, which reduces the power available for the desired signal,
and creates more intermodulation frequency components. These are, however,
usually much smaller than the signal unless the mixer saturates.

Amplification

The modulated microwave signal is then sent through a pre-amplifier (Mini-
Circuits ZX60-8008E) into a narrow-band, solid-state 5 W linear power ampli-
fier (6.4 to 7.1 GHz, Stealth Microwave SM6471-37HS). The power amplifier
can be turned off via a TTL signal (more than 100 dB suppression when
off). This is a very useful feature, since even when the modulation signal is
switched off, the amplified carrier signal leaking through the mixer is enough
to adversely affect the evaporative cooling in the magnetic trap due to para-
sitic microwave evaporation. The amplifier can be turned on and off within
roughly 5 µs and 300 µs, respectively.

Microwave antenna

A 6-feet cable (-2 dB loss) directly connects the power amplifier to the mi-
crowave antenna (Microwave Engineering Corp. H3HN-506). The antenna is
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Figure 4.10: Example of Rabi oscillations between the hyperfine states |1,−1〉
(marked red) and |2,−2〉 (marked blue) as the microwave pulse duration τ is
varied. Shown are absorption images after Stern-Gerlach separation and time
of flight. Here, the microwave power was adjusted to yield an on-resonance
Rabi frequency Ω0 of about 2π × 10 kHz.

essentially a matched sawed-off rectangular waveguide pointing towards the
science cell. At the position of the atoms it creates a horizontally polarized
oscillating magnetic field. The opening of the waveguide is located about 8 cm
away from the position of the atoms. Although a closer position would be
possible mechanically, we found that, when the antenna is placed too close,
eddy currents around the opening of the waveguide affect the turn-off of the
magnetic quadrupole trap and slightly kick the atoms away from the waveg-
uide.

4.7.2 Hyperfine State Manipulation and Detection

The purpose of the microwave radiation produced by the setup just described
is to drive magnetic dipole transitions between the two ground state hyperfine
manifolds F = 1 and F = 2. At a vanishing external magnetic field B0 = 0,
they are separated by 6834 MHz and are (2F+1)-fold degenerate. As discussed
in section 3.2, a non-zero magnetic field lifts the degeneracy of the hyperfine
levels and for small fields the energy difference between adjacent magnetic sub-
levels grows at about 0.7 MHz/G, as illustrated in Fig. 3.1. In order to detect
the population of the different internal states we map the internal states to
different motional states via Stern-Gerlach separation in a pulsed on magnetic
field gradient during time of flight (see Fig. 4.9). The transition frequencies
between the different magnetic sub-levels can be calculated analytically with
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Figure 4.11: Condensate production in the McTOP trap: Phase transition
as seen in near-resonant absorption images (F = 2→ F ′ = 3) after 16 ms time
of flight along with vertical cuts through the density profiles. The data are
fitted with the sum of two-dimensional Bose-enhanced Gaussian (thin line) and
Thomas-Fermi distributions [8]. Condensation sets in at a critical temperature
of (223± 12) nK at which the cloud contains (2.7± 0.4)× 106 atoms. For the
quasi-pure condensate shown, the temperature in brackets is an estimate based
on the condensate fraction assuming an ideal Bose gas.

the Breit-Rabi formula (3.17), and close to a particular transition the system
can be described as a two-level system, undergoing coherent Rabi oscillations
as shown in Fig. 4.10. On resonance, full population transfer occurs and the
Rabi frequency becomes minimal at fixed power. From the observed resonance
position one can therefore calibrate the magnitude of the magnetic field B0.

4.8 Condensate production

4.8.1 Condensate production in the McTOP trap

After transport into the science cell, the atom cloud typically contains 1.6 ×
109 atoms in the |1,−1〉 state at a phase-space density of 5 × 10−7. Forced
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radio-frequency (rf) evaporative cooling is initially performed in the stiff linear
potential of the fully-compressed quadrupole trap (350 G/cm axial gradient),
where it is more efficient until Majorana losses outweigh the advantage of a
linear potential [105]. After a 14 s-long linear rf evaporation ramp down to
a temperature of 75 µK and an atom number of 7 × 107, the phase-space
density has increased to 1 × 10−4 and the lifetime in the quadrupole trap
due to Majorana losses has decreased to 35 s. At this point, the trap is
converted into a TOP trap by switching on an 18 G rotating bias field, which
preserves the atom number to within 15% and the phase-space density to
within a factor of two [96]. The resulting harmonic trapping potential has
measured trap frequencies of 70.4 Hz in the axial and 25.0 Hz in the radial
direction. The trap parameters are held constant for the remaining 30 s of
the evaporation sequence, during which another piecewise-linear rf ramp takes
the cloud to quantum degeneracy, cf. figure 4.11(a). A detailed description of
various evaporation scenarios in the magnetic trap including the one currently
used can be found in [96].

Position and Atom Number Reproducibility

We have found the shot-to-shot position reproducibility of the condensate
to be consistent with the specified positioning uncertainty of the translation
stages (3σ = 3µm) once the system is warmed up, as shown in figure 4.11(b).
For this measurement, the condensate was imaged simultaneously along two
orthogonal axes in the horizontal xy-plane with resonant absorption imaging
on the repump transition 5S1/2(F = 1) → 5P3/2(F

′ = 2), immediately after
the magnetic trap had turned off. We have not observed any systematic shifts
of the condensate position caused by the “dual” imaging itself for the beam
intensities used.

During the first 63 of a total of 173 consecutive runs after a cold start, the
condensate position drifts by roughly 15 µm, as seen in figure 4.11(b). In the
z-direction we find a similar drift of about 7 µm. This initial drift is directly
correlated with the slow temperature increase and subsequent stabilization
at ∼ 75◦C of the supply cables (4/0 AWG, i.e. 11.6 mm core diameter) of
the quadrupole coils. As the cables warm up, their thick rubber insulation
becomes much less rigid, thus changing the mechanical torque exerted on the
coil holder. This potential problem can most easily be avoided by pre-warming
the cables at high quadrupole coil currents.

We have found the condensate atom number to be stable to within 5-
10% depending on the performance of the MOT. For optimized conditions,
condensates containing up to 1×106 atoms have been observed. No correlations
were found between the atom number and the position jitter of the cloud in
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Figure 4.12: Condensate production in the McTOP trap: Reproducibility
of the condensate position in the horizontal plane. The filled circles show the
in-situ positions of the condensate (as determined from simple Gaussian fits)
for the last 110 of a series of 173 runs. The 2σ ellipsoid (shaded) with 95% of
the runs has half-lengths of 3.3 µm and 1.8 µm, comparable to the specified
repeatability of the translation stages. The open circles represent a warm-up
drift during the first 63 runs (see text). The arrows indicate the two imaging
directions used, and the error bars indicate the maximum uncertainty in the fits
used to determine the condensate position. The radial Thomas-Fermi diameter
of the trapped condensate is ∼ 40 µm.

the science cell.

4.8.2 Condensate production in the optical trap

For condensate production in an optical trap, the evaporation in the McTOP
trap can also be used as “phase-space funnel” to load an optical dipole trap
after which the quadrupole coils are moved out of the way. The stationary
bias-field coils can then still be used to control the spin quantization axis, for
example.

The experimental procedure is as follows. After RF evaporation in the
magnetic potential, the atoms are loaded adiabatically into a crossed-beam
optical dipole trap formed by two orthogonally intersecting laser beams. This
is done by smoothly ramping up the optical potential over 400 ms and then
smoothly ramping down the magnetic confinement over another 400 ms. Af-
ter the transfer, the quadrupole coils are moved back to the intermediate
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Figure 4.13: All-optical trapping and manipulation of a condensate after
transfer from the McTOP trap. (a) Conversion of each of the two beams of
the crossed dipole trap (cf. figure 4.7) into an optical lattice beam by par-
tial retro-reflection, using a double-pass AOM configuration [106] with zero
net frequency shift and rapidly adjustable reflectivity of 10−6-10−1. To real-
ize a three-dimensional lattice, a third beam pair (with full retro-reflection)
is added along z. (b) Superfluid-to-Mott insulator transition and back in a
three-dimensional state-independent optical lattice (1064 nm)3 as observed in
absorption images after 18 ms time of flight. The lattice depth follows expo-
nential ramps of 80 ms duration, separated by a 10 ms hold time at a depth of
18 recoil energies ER (solid line).

position ‘b’ indicated in figure 4.1.
We typically load the optical trap with clouds at ∼ 250 nK and then ramp

down the trap depth to 5 µK in the horizontal and 200 nK in the vertical
direction where condensation sets in. At this point, the trap is nearly isotropic
with measured frequencies between 50 and 60 Hz. The loading procedure
results in nearly pure condensates with atom numbers that are within 90% of
those reached in the McTOP trap.

4.9 Demonstrating the Superfluid-to-Mott in-

sulator Transition with our Apparatus

By performing the final evaporation in an optical trap, it is possible to easily
use the TOP trap for optical lattice experiments, thus avoiding the usual
drawback of TOP traps: atomic micromotion [97] can lead to strong heating
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due to an oscillatory motion of the atoms relative to the lattice at the frequency
of the rotating bias field [98]. To demonstrate the suitability of our apparatus
for optical lattice experiments, we have observed a reversible superfluid-to-
Mott insulator transition in a three-dimensional (state-independent) optical
lattice [13, 14], as shown in Fig. 4.13(b). Since this initial data has been taken,
we have improved the quality of our lattice beams and the lattice ramps, such
that much cleaner single-component SF-MI transitions can be realized at the
time of writing this thesis.
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Chapter 5

Interacting Bosonic Mixtures in
Optical Lattices

In this chapter, I report the observation of many-body interaction effects for a
homonuclear bosonic mixture in a three-dimensional optical lattice with vari-
able state dependence along one axis. Near the superfluid-to-Mott insulator
transition for one component, we find that the presence of a second compo-
nent can reduce the apparent superfluid coherence, most significantly when
the second component either experiences a strongly localizing lattice potential
or none at all. We examine this effect by varying the relative populations and
lattice depths, and discuss the observed behavior in view of recent proposals
for atomic-disorder and polaron-induced localization. This chapter is based
on our publication Ref. [107].

5.1 Introduction

Bosonic mixtures in optical lattices allow for the study of many interesting
topics, such as the two-component Bose–Hubbard model [15–18], as illustrated
in Fig. 5.1, with its connection to quantum magnetism [15, 19] (see Fig. 5.2)
and models for decoherence mechanisms [20, 21]. In regard to condensed
matter physics simulations, the introduction of a second component allows for
the investigation of phenomena such as polaron physics [22–24] and phonon-
mediated long-range interactions [18, 23], as well as effects of impurities and
disorder [25–29].

Recent experiments have addressed heteronuclear mixtures of atoms in op-
tical lattices, both for the boson-boson [108] and boson-fermion [109–111]
cases. The superfluid coherence of the heavier bosonic component was univer-
sally found to decrease in the presence of the lighter second species, indepen-
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Figure 5.1: Illustration of the two-component Bose-Hubbard model. Here,
the two components are realized by two different internal states |a〉 and |b〉.
Each component has its own tunneling rates ta and tb between nearest-neighbor
sites, and intra-component on-site repulsions Ua and Ub. Additionally, the two
components interact via the inter-component on-site repulsion Uab.

dent of the sign of the interaction, even for small overlap between the compo-
nents [108]. There exists a number of explanations for the observed behavior,
ranging from localization due to impurities [110], self-trapping [111], the for-
mation of composite particles [109], incoherent scattering of phonons [108], to
thermalization effects [109] and changes in the chemical potential [112]. Com-
pared to the single-component case, the description of mixtures presents richer
physics, but also depends on additional parameters, such as the ratio of the
tunneling rates, the interspecies interaction, and the relative atom numbers.

In this chapter we study how the superfluid coherence of bosons in a lat-
tice is affected by a variable bosonic “background” medium. Through a state-
dependent optical lattice we can vary the localization of the medium’s con-
stituent atoms, and we find a non-monotonic dependence of the coherence
properties of the primary species (“foreground atoms”) on this localization.
For a binary mixture of 87Rb hyperfine states, we demonstrate a reversible
state-dependent transition from the superfluid into the Mott regime, and we
systematically examine interaction effects by varying both the relative popula-
tions and the respective lattice depths. Remarkably, the superfluid coherence
decreases not only when the bosons of the medium are strongly localized, but
also when they are very delocalized.
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Figure 5.2: Ordered phases of the two-component Bose-Hubbard model in
the deep Mott-insulator limit at unit filling (na + nb = 1) at T = 0 obtained
via a simple mean-field ansatz following Ref. [17] (details of the calculation can
also be found in [78]). In this limit, the model can be mapped to the spin-
1/2 XXZ anisotropic Heisenberg model, and the two types of bosons can be
viewed as the eigenstates of a pseudo-spin 1/2. Depending on the tunneling
ratio ta/tb and the strength of the inter-species interaction Uab, the system fa-
vors different “magnetically” ordered phases, such as an easy-axis ferromagnet
(z-FM), which corresponds to phase-separation in the particle picture, an Ising
antiferromagnet (z-AF) or checkerboard-ordered state, and an easy-plane fer-
romagnet (xy-FM). In the particle point of view, this last phase is a so-called
counterflow superfluid [15], and represents the most interesting of the three
magnetic phases shown here.

5.2 Experimental Procedure

Our experimental setup has been described in detail in chapter 4. In brief, we
produce a 87Rb Bose–Einstein condensate in the |F,mF 〉 = |1,−1〉 hyperfine
ground state containing 3 − 5 × 105 atoms in a crossed-beam optical dipole
trap (ODT) at λ⊥ = 1064 nm, with a mean trap frequency of about 50 Hz.
We prepare mixtures of the |1,−1〉 ≡ |a〉 and |2,−2〉 ≡ |b〉 hyperfine ground
states, with variable fractional populations fa and fb = 1− fa, via microwave
Landau–Zener sweeps [113]. These mixtures are subsequently loaded into an
adiabatically ramped up 3D optical lattice. The state-independent transverse
lattice potentials along x and y are generated by partial retroreflection of the
ODT beams [90], maintaining constant gravitational sag through coordination
of the forward beam intensities with the amount of retroreflection. The state-
dependent lattice along z is generated by full retroreflection of a beam at
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λz = 785.1 nm (1/e2 radius: 230 µm). At this wavelength (between the D1

and D2 lines of 87Rb), the individual depths Va and Vb of the z-lattice, for |a〉
and |b〉, are strongly polarization dependent [69]. A 0.4 G magnetic bias field
along z defines the quantization axis. By varying the polarization of the beam
from σ+ to σ−, we can adjust the ratio Vb/Va from approximately 0 to 3.5.
We characterize the many-body state in the lattice by releasing the atoms and
then absorptively imaging both components on the F = 2 → F ′ = 3 cycling
transition after 18 ms time-of-flight (TOF), concurrent with optical pumping
from F = 1 → F ′ = 2. Additionally, we use a magnetic Stern–Gerlach pulse
to separate the states in TOF.

The use of a homonuclear mixture avoids differential gravitational sag [108]
in our far-detuned ODT, and the similarity of all relevant scattering lengths
(difference < 2% [114]) precludes macroscopic phase separation. We charac-
terize component overlap in the ODT using collinear two-component four-wave
mixing as a sensitive probe [115]. Residual magnetic field gradients were care-
fully canceled by maximizing component overlap and inferred to be less than
40 µG/cm from hyperfine Ramsey measurements.

We first demonstrate a state-dependent transition from the superfluid to
the Mott regime, keeping the final transverse lattice depth constant at 12 E⊥R
(E⊥R = ~2k2

⊥/2m, k⊥ = 2π/λ⊥) and ramping up and down the z-lattice depth1.
The transverse lattice depth is slightly below the superfluid-to-Mott insulator
transition in an isotropic 3D cubic lattice (at a tunneling-to-interaction ratio
t/U ≈ 1/36 [13]), and sufficiently large for undesired four-wave mixing effects
in TOF [115] as discussed in section 6.6 to be negligible. Fig. 5.3 shows TOF
images for the case Va = 4Vb and a ramp of Va up to 15 ER (ER = ~2k2

z/2m,
kz = 2π/λz). The |a〉 atoms undergo a reversible transition into the Mott
regime, while the |b〉 component remains superfluid.

5.3 Visibility and diffraction peak width as co-

herence measures

To characterize the many-body states of the two components, we analyze the
visibility [116] and peak width [117] of their TOF diffraction patterns. As
our optical lattice is anisotropic (transverse and vertical axes) in both lattice
constant and depth, we employ a single-axis visibility measure along the state-

1Our initial attempts with a slightly different lattice loading sequence are described in
detail in Ref. [78]. There, however, we were not able to observe any interspecies interaction
effects, simply because the two components got vertically separated due to a change in
gravitational sag during the lattice ramp up, which we had not considered at that time.
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Figure 5.3: State-dependent transition from the superfluid to the Mott-
insulating regime. (A) Surfaces of equal probability density (1/e2) for non-
interacting atoms of type |a〉 (red) and |b〉 (blue) in a three-dimensional lattice
with depths of 12 E⊥R in the transverse directions (x, y), and 15 (3.8) ER along
z for |a〉 (|b〉) atoms. (B) Time-of-flight (TOF) absorption image after release
of a balanced mixture (fa ≈ fb). The aspect ratio lz/lx is given by kz/k⊥. (C)
TOF images after Stern–Gerlach separation. The |a〉 component (red) enters
the Mott regime (with ta/Uaa ≈ 1/39, and t⊥/Uaa ≈ 1/38), whereas the |b〉
component (blue) remains superfluid. The bottom graph illustrates the state-
dependent z-lattice ramp. The transverse lattice ramp (not shown) follows a
sigmoid curve of 115 ms duration and reaches its full depth of 12 E⊥R as the
z-lattice goes through half of its maximum depth.

dependent vertical axis. A 600 µs gravitational π-phase shift [13, 118] between
adjacent vertical lattice sites produces a symmetric diffraction pattern with
two vertical peaks separated by 2~kz (in contrast to the patterns of Fig. 5.3
without a shift). This is accomplished by turning off the ODT while keeping on
the z-lattice. The visibility is then defined as γ = N−/N+, where N± = N+1 +
N−1 ± 2N0 are the sum and difference of the atom numbers in the diffraction
peaks (N+1, N−1) and intermediate region (N0), as shown in Fig. 5.4 (I-A).
To determine the peak width σ (1/e half-width), we sum over a vertical strip
and fit the projection with two Gaussian peaks on top of a broad Gaussian
background.
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In the following, we examine how the coherence properties of a given su-
perfluid component depend on the presence of a background of either a lighter
(in terms of the band mass m∗z) superfluid, or heavier “impurity” atoms. This
is implemented by a halving (I) and doubling (II) of the maximum z-lattice
depths as compared to Fig. 5.3. In the first case (I) the background medium is
formed by |b〉 atoms in a 2 ER deep potential, and in the second case (II) by |a〉
atoms in a potential with 31 ER depth. In both cases, the foreground compo-
nent (|a〉 atoms in (I), |b〉 atoms in (II)) experiences an 8 ER deep lattice, for
which the visibility displays a strong differential dependence on lattice depth
and tunneling (at the chosen transverse lattice depth of 12 E⊥R ). In both cases,
we vary the relative populations fa and fb = 1 − fa of the two components
while keeping the total atom number constant, which allows for separating out
effects of interspecies coupling from simple overall density effects.

5.4 Delocalized background medium

In case (I) the background density is only weakly modulated by the 2 Er deep
z-lattice, while the foreground atoms are concentrated on lattice sites to a
good approximation, but can still tunnel appreciably. The collisional inter-
action will thus tend to repel background atoms away from sites populated
by the foreground atoms, as shown schematically in Fig. 5.5 (A) . The re-
sulting dips in the background density (within a characteristic range given
by the mean-field healing length ξ) in turn increase the foreground atoms’
localization. This mechanism, similar to self-trapping of impurities in a con-
densate [22], corresponds to the formation of polarons [23] – composite quasi-
particles consisting of individual foreground atoms surrounded by a coherent
phonon cloud comprising the background’s local mean-field depression. The
immersed foreground atoms should thus have an increased effective mass and
a lower tunneling than bare foreground atoms, leading to a degradation of the
foreground’s observed coherence.

Data for case (I) are shown in Fig. 5.4 (I). As the superfluid background
of |b〉 atoms gets more and more populated at the expense of the foreground
|a〉 component, the |a〉 visibility drops continuously and the diffraction peaks
get broader. A reference without background, in which the |a〉 atom number
is correspondingly varied, in contrast reveals a slight increase in visibility with
a reduction in |a〉 atom number, consistent with the naive expectation for a
decrease in on-site density. We note that atom transfer from the |a〉 component
to the less localized |b〉 component lowers the on-site density as well, which
naively should also lead to an increase in visibility. The observations thus are
not consistent with a simple overall density effect. Additionally, the visibility
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Figure 5.4: Effects of a background medium on the superfluid coherence.
(I;left column) |a〉 atoms (Va = 8.3 ER) in contact with superfluid |b〉 atoms
(Vb = 2.1 ER) and (II;right column) |b〉 atoms (Vb = 7.8 ER) in contact with
localized |a〉 atoms (Vb = 31 ER). (A) Stern–Gerlach separated TOF images
(for fa ≈ fb) after a gravitational phase shift. The circles in (I) denote apertures
used to determine visibility. (B) Dependence of the visibility and the peak
width on the relative population of the background medium, with constant
total atom number 1.7(1) × 105; the insets show corresponding data for the
background medium. The open circles denote reference measurements without
background medium, in which the atom numbers are varied correspondingly.
All ramp shapes are as in Fig. 5.3, with V⊥ = 12 E⊥R .

could in principle be affected by incoherent intra- and interspecies collisions
after release from the trap. However, both would similarly degrade the |b〉
visibility which, as seen in the inset of Fig. 5.4 (I-B), remains at a consistently
high value throughout.
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The observed reduction of the |a〉 visibility from γa ≈ 0.5 (no atoms in
background) to γa ≈ 0.3 (95% in background), and the associated increase in
peak width, would correspond in the single-component case to a reduction of
tunneling by about 40%, as estimated from an independent single-component
reference measurement in which the lattice depth was varied. For a single im-
mersed |a〉 atom, the surrounding dip of the |b〉 component density leads to an
on-site polaronic energy shift Vp = gab,1D/ξ ∼ 0.2 ER [23] (where ξ ∼ 200 nm,
gab,1D = 2aab~ω⊥ and aab ≈ abb ≈ 100a0 is the interspecies scattering length),
and one can roughly estimate that for the modified on-site potential depth
∼ Va+Vp there is an approximately 5% reduction in tunneling. Therefore, this
single-polaron effect alone seems insufficient to explain the observed change in
visibility. However, given the large number of |a〉 atoms even at fb = 0.95, ad-
ditional localization can be expected due to polaron clustering [23], illustrated
in Fig. 5.5 (A), which results from attractive off-site interactions mediated
by the superfluid background [18]. The mutual exponential localization of po-
larons in clusters has been predicted to lead to a broadening of the momentum
distribution [23], similar to our observations.

With regard to possible temperature effects, adiabatic loading of bosons
into the lowest band of a 3D optical lattice should lead to lower temperatures
due to the reduction in band width [119]. Given the unequal z-lattice depths,
one thus would expect unequal final temperatures for the two components
if loaded separately, leading to thermalization in a mixture [77]. However,
thermalizing elastic collisions should be largely suppressed due to the mismatch
in band structure [77, 115]. Moreover, the expected temperatures in the lattice
are incompatible with the magnitude of the observed effects, even assuming
thermalization. Reference measurements with only |a〉 atoms showed that
visibilities below 0.3 require initial loading temperatures exceeding 75 nK,
which can be estimated 2 to yield final temperatures above 14 nK. However,
for the mixture we start with much lower initial loading temperatures ∼15 nK
that should accordingly be reduced to below 4 nK even in the weaker |b〉 lattice
(also, these temperatures � Vp/kB are sufficiently low to suppress effects
of thermal phonons on polaron tunneling [23]). We can also exclude trivial
heating effects due to spontaneous photon scattering from the state-dependent
lattice beam, since the |b〉 atoms are not only less confined to intensity maxima,
but also have a slightly lower scattering rate, so that such heating should be
lower for higher values of fb.

2Using Tf/Ti ∼ m/m∗ [119], with m∗ = 3
√
m∗xm

∗
ym
∗
z for our anisotropic lattice [120]

63



(A)

(B)

Figure 5.5: (A) The delocalized background component (blue) forms a super-
fluid bath for the foreground atoms (red). Because of the inter-species repulsion
a foreground atom creates a region of reduced background density around it,
and effectively gets “dressed” by the phonon excitations of the bath, forming
a polaron [23]. The tunneling of this polaron is reduced compared to a bare
foreground atom since, pictorially speaking, it has to carry the dressing cloud
along as it moves through the bath. With the density dip extending over a
slightly larger range than the lattice spacing, the foreground atoms should fur-
ther feel off-site attractive interactions mediated through the background com-
ponent, which can lead to clustering and localization. Both, reduced tunneling
and clustering will reduce the superfluid coherence of the foreground compo-
nent compared to the single-component superfluid-to-Mott insulator transition.
(B) The opposite case of a strongly localized background medium, now formed
by the red atoms, which act as static local impurities for the blue foreground
component. Here, as for the first case, the red curve indicates the optical lat-
tice potential felt by the red atoms, while the blue curve shows the potential
seen by the blue atoms through the interaction with the red ones. The ran-
dom atomic disorder potential can lead to Anderson localization and Bose-glass
physics [25], in effect reducing the superfluid coherence of the foreground com-
ponent, as in the first case. One could think that the red atoms should form
a regular, Mott insulating phase instead of a disordered assembly. However,
when co-loading two interacting components into a state-dependent optical
lattice, in a certain parameter range this can result in a disordered mixture
of small droplets of the two components, a so-called “quantum emulsion” [27].
Another interpretation is through a percolation phenomenon [28, 29], i.e. at
some point when the impurity density has become large enough, there exists
no percolating path connecting the different condensate droplets any more, so
that the overall superfluid coherence suddenly disappears.
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5.5 Strongly-localized background medium

Observations

We now turn to the case (II) of a superfluid coupled to a background medium
that is pinned to the optical lattice. We ramp the z-lattice to Vb(a) ≈ 8(31) ER,
for which the |a〉 component, now playing the role of the background, is deep
in the Mott regime. With an increasing background fraction, we again observe
a drop in visibility and an increase in peak width of the foreground |b〉 atoms,
as is shown in Fig. 5.4 (II).

Possible causes and interpretations

The observed changes for the |b〉 component could be caused by a simple in-
crease of on-site interactions due to localized |a〉 atoms. However, the changes
to both visibility and peak width are quite abrupt, which may be indica-
tive of a disorder effect. The simultaneous loading of multi-component gases
with differing lattice parameters is predicted to result in a “quantum emulsion
state” [27, 112] similar to a Bose-glass, with the less mobile species acting as
quasi-static impurities [25], as illustrated in Fig. 5.5 (B). The observed sud-
den drop could thus be caused by the concentration of localized |a〉 atoms
increasing beyond a percolation threshold, leading to localization of the |b〉
atoms [28, 29]. Another possible contribution, heating due to spontaneous pho-
ton scattering by |a〉(|b〉) atoms, is measured to amount to less than 14(8) nK
for symmetric ramps to 31(8) ER and back down. However, thermalization
(which by the earlier argument should be largely suppressed due to disparate
band structures) would not appear to be consistent with the suddenness of the
change in |b〉 visibility and peak width at fa ∼ 0.8 for a continuous increase of
background |a〉 population.

5.6 Varying the localization of the background

medium

Finally, having studied these two extreme cases, we examine more closely
how the interspecies effects depend on the background medium’s degree of
localization at a fixed background fraction. Using the polarization dependence
of our lattice, we keep Va fixed at 12 ER while tuning Vb over a wide range,
changing the character of the |b〉 background component from superfluid to
localized. Shown in Fig. 5.6 are results for a mixture with fb ≈ 3/4. The
addition of |b〉 atoms leads to a reduction of the |a〉 visibility, most prominently

65



Vb(ER )

Vb = Va

γ a  

0 10 20 30 40

σ a
(ħ

k)

0.2

0.3

0.4

0.2

0.4

0.6

Figure 5.6: Dependence of superfluid coherence on the localization of the
second component. Visibility (γa) and peak width (σa) (filled circles) of the
|a〉 component, with fixed lattice parameters of Va = 12 ER and V⊥ = 12 E⊥R ,
in the presence of |b〉 atoms (fb ≈ 3/4, Na + Nb = 3.7(2) × 105) as Vb is
increased. In references (open circles) taken without |b〉 atoms and with Na =
1.0(1)× 105, the visibility and peak width are roughly constant at 0.52(3) and
0.26(2) (dashed lines). Data points are averaged over 3-5 runs, with statistical
error bars shown. Uncertainties in lattice depth are ∼5% (not shown).

when the |b〉 component is either much lighter or much heavier, in terms of
band mass. For Vb = Va, the visibility is lower than in a reference measurement
in which only |a〉 atoms were present, which is most likely caused by the
near doubling of the chemical potential due to the increase in overall atom
number. We note that the strongest interspecies effects are observed when
the background |b〉 atoms are highly localized, while no effect is observed for a
similar background fraction of localized atoms in Fig. 5.4 (II). However, here we
have a much greater total population (more than twice that of Fig. 5.4 (II)),
so that the concentration of sites occupied by localized background atoms
will be greater for a given background fraction, which should enhance the
disorder-induced localization of the foreground component as discussed above.
In general, the foreground visibility at a given lattice depth should depend on
the modified tunneling and on-site interactions due to background atoms, as
well as non-trivial effects of clustering and disorder as discussed above. Thus,
a determination of where the visibility maximum is located would require a
quantitative model for the detailed interplay between these effects.
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5.7 Conclusion

In summary, we have studied interspecies effects for a binary bosonic mixture,
in a three-dimensional optical lattice with tunable state dependence along one
axis. We observe a reduction of apparent superfluid coherence, most strongly
for large population imbalances and tunneling rate asymmetries of the two
components. The observed reduction in coherence for the addition of both a
delocalized and also a localized second species suggest polaron-related effects
and atomic-disorder, respectively. Our system should be of interest for future
investigations of phonon-mediated interactions in polaron systems and in the
spin-boson model.
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Chapter 6

Collinear Four-Wave Mixing of
Two-Component Matter Waves

We demonstrate atomic four-wave mixing of two-component matter waves in
a collinear geometry. Starting from a single-species Bose–Einstein conden-
sate, seed and pump modes are prepared through microwave state transfer
and state-selective Kapitza–Dirac diffraction. Four-wave mixing then popu-
lates the initially empty output modes. Simulations based on a coupled-mode
expansion of the Gross–Pitaevskii equation are in very good agreement with
the experimental data. We show that four-wave mixing can play an important
role in studies of bosonic mixtures in optical lattices. Our system should also
be of interest in the context of quantum atom optics [47]. This chapter is
based on our publication Ref. [115].

6.1 Introduction

Four-wave mixing is a fundamental, well-studied concept in nonlinear optics
and spectroscopy [30]. Its matter-wave analogue, based on binary collisions
in ultracold atomic gases, was first demonstrated experimentally a decade
ago [31–33], establishing the field of nonlinear atom optics [34]. In four-wave
mixing, two waves form a grating from which a third wave diffracts, thus gen-
erating a fourth wave. This process has been used for coherent matter-wave
amplification [35, 36], and for the generation of correlated atom pairs [34–38].
Energy and momentum conservation require the magnitudes of all atomic mo-
menta in the center-of-mass frame to be equal which, for atoms in a single
internal state, necessitates a two-dimensional geometry [32, 33]. By modify-
ing the dispersion relation with an optical lattice, non-degenerate four-wave
mixing of a single species becomes possible also in one dimension [39–41].
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Despite considerable theoretical work on atomic four-wave mixing (FWM)
with more than one internal state [42–45], experiments have only very recently
started to explore possible mechanisms for such FWM [38, 46]. The addi-
tional internal degree of freedom allows for degenerate FWM to occur in one
dimension, with pairs of waves in different internal states sharing the same
momentum mode, opening up possibilities to generate non-classical matter-
wave states, e.g. with macroscopic spin entanglement [43, 44]. In this chapter,
we demonstrate free-space collinear atomic FWM involving two internal states
with distinct, macroscopically populated momentum modes.

Apart from the relevance for quantum atom optics, another important con-
text arises in experimental studies of bosonic mixtures in optical lattices [77,
108, 121]. These systems are of high interest not only in connection with ap-
plications to quantum magnetism [15–17], but also for studies of decoherence
mechanisms [20, 122], and for lattice thermometry [77, 121]. Most experi-
ments with ultracold atoms in optical lattices to date rely on time-of-flight
information. In particular, a sudden release from the lattice projects the band
populations onto plane-wave states [123]. We find that for a homonuclear
mixture of interacting superfluids, four-wave mixing processes can alter the
expected momentum-space distributions, masking or even mimicking in-situ
interaction effects.

6.2 Experimental Procedure

In order to induce collinear two-component four-wave mixing, we apply a
state-selective optical lattice pulse to a Bose–Einstein condensate containing
atoms in two internal states |a〉 and |b〉, as illustrated in Fig. 6.1 (A). The
pulse induces Kapitza-Dirac (KD) diffraction [79–81] producing recoiling |a〉
atoms in both positive and negative momentum modes |±2〉 ≡ |±2~kL〉 where
kL = 2π/λL, while the |b〉 atoms remain unaffected. Subsequently, as illus-
trated in Fig. 6.1 (B), the |b〉 atoms Bragg diffract from the density modulation
formed by the interference of the recoiling |a〉 atoms |a,+2〉 ≡ |a〉⊗ |+2〉 with
those at rest, |a, 0〉. Due to momentum exchange collisions, the recoiling |a〉
atoms are coherently transferred back into |0〉, as recoiling atoms |b,+2〉 are
produced. This process is formally not distinguishable from coherent (pseudo-)
spin exchange. Our system might thus pose an interesting alternative to spinor
condensates for the creation of non-classical states [43, 44, 46]. We note that
due to the symmetry of the KD pulse, another, independent “copy” of the
FWM process occurs on the negative momentum side. For quantum atom
optics purposes, this can easily be avoided by using a state-selective Bragg
pulse instead, which also allows for extended control of the initial mode pop-
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Figure 6.1: Experimental scheme. (A) State-selective Kapitza–Dirac diffrac-
tion of a two-component Bose–Einstein condensate in hyperfine states |a〉 and
|b〉, which populates the recoiling modes |a,±2~kL〉 while the |b〉 component
remains unaffected. (B) Four-wave mixing (solid arrows) with pump modes
|b, 0〉, |a, 2〉 and seed mode |a, 0〉 transfers |b〉 atoms to the output mode |b, 2〉.
Due to the symmetry of the problem, the process also occurs for the modes
|a,−2〉 and |b,−2〉 (dashed arrows).

ulations. In the present work, however, we are content with applying a KD
pulse, mainly out of technical convenience.

Our experimental setup has been described in detail in Ref. [90]. In a
crossed-beam optical dipole trap at 1064 nm wavelength, we produce nearly
pure 87Rb Bose–Einstein condensates in the |a〉 ≡ |F = 1,mF = −1〉 hyper-
fine state typically containing about 1.6 × 105 atoms. The trap is approxi-
mately isotropic with a mean trap frequency around 50 Hz and an alignment-
dependent vertical frequency ωz/2π between 40 and 50 Hz. We then apply a
microwave Landau–Zener sweep to transfer a variable fraction of the conden-
sate into the |b〉 ≡ |2,−2〉 hyperfine state [113]. Immediately afterwards, a
state-selective lattice beam [69, 70] of wavelength λL = 785.1 nm is pulsed on
along the vertical z-direction (1/e2 radius 230 µm) for a time τKD. The polar-
ization of the light (σ+) is chosen such that only the |a〉 atoms feel the optical
lattice potential formed through retro-reflection of the beam. A small mag-
netic field of ∼0.4 G along the beam axis defines the quantization axis. After
release from the trap and a few milliseconds of free evolution, during which
the FWM occurs, a magnetic field gradient (Stern–Gerlach pulse) spatially
separates the two hyperfine states along the horizontal x-axis for detection.
Finally, the atoms are imaged along the y-axis after a total time of flight of
15 ms by a 100 µs long pulse of near-resonant F = 2 → F ′ = 3 imaging
light, combined with F = 1 → F ′ = 2 repumping light, which ensures equal
detection efficiencies for both hyperfine states.
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Figure 6.2: Typical absorption images taken after application of the state-
selective Kapitza–Dirac pulse (τKD = 25 µs, Va = 6 ER), 15 ms time of flight
and Stern–Gerlach separation along x, for the case of (A) only |a〉 atoms
present (fa = 1), (B) only |b〉 atoms (fa = 0), and (C) equal populations of
both components (fa = 0.5).

6.3 Results

In Fig. 6.2, typical absorption images are shown for three different fractions of
|a〉 atoms fa ≡ Na/N . The KD pulse duration (25 µs) and the lattice depth
Va for atoms of type |a〉 (6 ER, where ER = ~2k2

L/2m is the recoil energy),
are chosen such that half of the population of |a〉 atoms is diffracted into
|±2〉, while higher orders remain largely unpopulated. By analyzing single-
component diffraction patterns [81], we have determined the lattice depths for
each component, confirming that atoms of type |b〉 experience < 5% of the
lattice depth seen by the |a〉 atoms. On their own, the |b〉 atoms therefore are
not affected by the lattice pulse, as shown in Fig. 6.2 (B). However, when both
components are present, a significant fraction of |b〉 atoms is transferred into
the |±2〉 momentum modes (Fig. 6.2 (C)).

We have measured the amount of diffracted atoms in each state as a
function of fa. As shown in Fig. 6.3, the fraction of diffracted |b〉 atoms
(Nb,+2 + Nb,−2)/Nb monotonically increases from zero towards a maximum as
fa is increased, consistent with the picture that the grating formed by interfer-
ence of the |a, 0〉 and |a,±2〉modes, from which the atoms in |b, 0〉 diffract, gets
deeper as the number of |a〉 atoms grows. The relative number of diffracted
|a〉 atoms has a pronounced minimum near fa = 0.5, which can be interpreted
as a “back-action” of the |b〉 atoms onto the |a〉 grating.
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Figure 6.3: Fraction of atoms with momenta ±2~kL in state |a〉 (green circles)
and |b〉 (orange squares) after four-wave mixing. The solid curves are obtained
from the theoretical model described in the text using the same parameters as
in Fig. 6.4.

6.4 Theoretical Model

To obtain a more quantitative understanding, we theoretically model our sys-
tem starting from the coupled Gross-Pitaevskii equations (GPE) for the order
parameters Φα(r, t) of the two components α ∈ {a, b}

i~ ∂tΦα =

− ~2

2m
∇2 + V tot

α +
∑

β∈{a,b}

gαβ |Φβ|2
Φα, (6.1)

where gαβ = 4π~2aαβ/m, m is the atomic mass, and the intra and inter-species
s-wave scattering lengths aaa, abb, and aab in units of a0 are 100.4, 99.0, and
99.0, respectively [114, 124]. The trapping and lattice potentials are given
by V tot

α = Vtrap(r, t) + Vα(t) sin2(kLz). Similar to the slowly-varying envelope
approximation (SVEA) used in Refs. [32, 33, 45], we approximate the solution
of Eq. (6.1) as an expansion in terms of momentum modes, or wave packets,
moving along z with multiples of the recoil velocity vR = ~kL/m

Φα(r, t) =
∞∑

n=−∞

cnα(t) e
i nkLz Φ0(r− ẑnvRt, t) . (6.2)

However, since we are mainly interested in the mode populations, we further
assume that the wave packets Φ0 are of Thomas–Fermi form and expand hy-
drodynamically after release from the trap [9], which leads to a significant
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simplification compared to a full SVEA simulation. On the time scales of
interest, phase-separation [125–127] can be neglected, and we have Φα ∝ Φ0

for both components immediately following the microwave transfer [125, 126].
Since the momentum-spread of Φ0 is much less than ~kL, the modes in the
expansion are quasi-orthogonal. After inserting the ansatz (6.2) into Eq. (6.1),
we arrive at a system of coupled equations for the amplitudes an(t) ≡ cna(t)

i~ ∂tan = ER n
2an + Va(t)

[
1
2
an − 1

4
(an+2 + an−2)

]
+
∑
mm′n′

(gaa a
∗
mam′ + gab b

∗
mbm′)an′ hnmm′n′(t)

and similarly for the other component bn(t) ≡ cnb(t). Here, hnmm′n′(t) ∝
δ(n+m−m′−n′) denotes overlap integrals that include the effective temporal
decay of the nonlinear interaction, as the different wave packets separate, and
as the density decreases during the expansion. The terms responsible for FWM
are of the form b∗mbnam (and a∗manbm for the |b〉 component) with m 6= n.
After adjacent modes (|m− n| = 2), for which the overlap decays the slowest,
have completely separated, the populations remain frozen, since only equal-
momentum self and cross-phase modulation terms of the forms |an|2an and
|bn|2an survive. With a typical Thomas–Fermi radius Rz ∼ 10 µm, we obtain
a typical separation time tsep ≈ 2Rz/2vR of 1.7 ms.

6.5 Discussion

The full set of observed populations |an|2 and |bn|2 after FWM is plotted
in Fig. 6.4, along with predictions of our model obtained with parameters
according to the experimental ones, leaving only the total atom number N as
a fit parameter. The overall agreement between data and theory is remarkable.
The maximum FWM yield occurs near fa = 2/3 where the initial populations
of the pump and seed modes are equal, maximizing the FWM term a∗manbm
at t = 0 [32, 33]. The data also clearly show the correlated growth of |b±2|2
and |a0|2, along with a corresponding depletion of the pump modes |b0|2 and
|a±2|2, as detailed in the inset.

We note that since the FWM yield is proportional to the inter-species scat-
tering length as well as to the overlap

∫
d 3r |Φa|2|Φb|2 of the two components,

it can serve as a sensitive probe for both quantities. As a practical example, we
use two-component FWM as a clear “single-shot” diagnostic for the optimiza-
tion of component overlap. By carefully canceling magnetic field gradients we
are able to sustain overlap, i.e. FWM yield, for up to 2 s after the microwave
transfer.
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Figure 6.4: Mode populations after four-wave mixing. Populations |cnα|2 =
Nnα/N of the modes |α, n〉, as indicated in the plaquette. The dashed lines
(1), (2), and (3) indicate the initial conditions before FWM, |b0(0)|2, |a0(0)|2 =
|a±2(0)|2, and |b±2(0)|2 (where ±2 indicates the combined populations). The
arrows indicate the temporal evolution of the populations. The solid lines
represent the predictions of the model (Va = 5.6 ER, τKD = 25 µs, ωz =
2π × 51 Hz, N = 1.4 × 105). The inset shows the transferred |b〉 population
vs. the transferred |a〉 population, where the dashed line represents a slope of
unity.

To further confirm the coherence of the observed two-component FWM as
implied by our model, we directly map out the time evolution of the output
mode population |b±2|2 by interrupting the FWM process after a variable time
through a selective removal of |a〉 atoms. This is achieved by a 50 µs long
“blast” pulse of light resonant with the F = 1→ F ′ = 2 repumping transition.
As shown in Fig. 6.5, the atom number in the |b,±2〉 modes smoothly grows
from zero to a maximum value reached around the expected separation time.
The nonlinear, initially quadratic growth is indicative of a coherent process [33,
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Figure 6.5: Growth of the population in the output mode |b,±2〉 following the
Kapitza–Dirac pulse for Vb = 0 (orange squares) and for Vb = Va (blue triangles,
×1/2). The FWM was interrupted after a variable time τ by blasting away the
|a〉 atoms. Each data point is averaged over 2–6 runs (here ωz = 2π × 41 Hz,
fa = 0.5). The dashed lines are the predictions of the uncorrected model
(including higher order FWM terms), whereas the solid lines take into account
the loss of atoms during the blasting process (see text). The blast-loss model
was calibrated by fitting to the Vb = Va data.

35] (other signs would be an overshoot and oscillations, which however would
require higher densities or longer overlap). To exclude the possibility that the
observed growth of the output mode population is merely an artifact caused by
density-dependent losses of |b〉 atoms accompanying the blast (due to collisions
with |a〉 atoms), we repeat the experiment with the polarization of the lattice
beam chosen such that both components experience the same lattice depth
of about 6 ER. In this case, we expect the |b,±2〉 modes to be populated
immediately after the KD pulse, as indeed can be seen in Fig. 6.5. Further,
no FWM is expected to occur for Vb = Va, as the internal and external state
dynamics are decoupled. By comparing the observed time evolution for this
reference case with the expected one, we can calibrate our model for the blast-
induced losses, which assumes a relative loss of |b〉 atoms proportional to the
density of |a〉 atoms in the overlap region. With this correction, the theoretical
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Figure 6.6: Four-wave mixing effects for an adiabatically ramped-up optical
lattice. (A) An |a〉-selective lattice is ramped up to a depth of 6.0 ER within
100 ms onto an equal mixture (fa = 0.5). After release and 17 ms time of flight,
|b〉 atoms appear in |±2〉. (B) Growth of population in |b,±2〉 as determined
by blasting away the |a〉 atoms after an evolution time τ . Each data point is
averaged over 6 runs.

time evolution for Vb = 0 matches the experimental data very well.

6.6 FWM after release from a slowly-loaded

lattice

So far, we have discussed controlled FWM after application of a short optical
pulse to induce diffraction. Now, we turn to the question whether FWM is also
relevant in the case of adiabatically ramped-up, state-selective optical lattices.
For such a system, inter-species interactions can be expected to give rise to
diffraction effects qualitatively similar to those due to FWM. The density pro-
file of the |a〉 component gets spatially modulated by the optical lattice, thus
forming an “atomic lattice” that, in turn, should modulate the density of the
|b〉 component. The momentum distribution after release should then exhibit
diffraction peaks at ±2~kL, which thus could be interpreted as a signature of
such a density modulation. However, we find that, at least as long as both
components are in the superfluid state, FWM is by far the dominant mecha-
nism for the emergence of recoiling |b〉 atoms, caused by the projection of the
|a〉 component into plane-wave momentum modes after release. We note that
the mismatch between the dispersion relations for |a〉 and |b〉 atoms suppresses
FWM while the lattice is on. For fa = 0.5 and Va = 6 ER (Vb = 0), as shown
in Fig. 6.6 (A), we measure a relative population of up to 1.5 % in each of
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the |b,±2〉 states. Assuming this to be caused by a density modulation would
require an atomic lattice modulation depth of 2 ER, more than the chemical
potential of the condensate in the lattice. A blast measurement as discussed
above shows that the population in the observed peaks slowly grows only after
release from the lattice (Fig. 6.6 (B)), indicating that the peaks are indeed
caused by FWM.

We have performed analogous experiments for different final lattice depths
Va, and with additional, state-independent lattices along the x and y direc-
tions. In brief, we observe similar FWM effects along the state-dependent axis
(cf. also [77], Fig. 8); however, we find that no FWM peaks are produced when
the |a〉 atoms are in the Mott regime. This is consistent with the notion that
FWM as described relies on the existence of a well-defined macroscopic phase
and thus bears the potential to be used as a sensitive probe of phase coherence.

6.7 Conclusion

To summarize, we have demonstrated collinear four-wave mixing in a two-
component mixture of bosonic atoms, and find excellent agreement with a
simple theoretical model. Our work is of relevance both in the context of
quantum atom optics [47], and for experimental studies of bosonic mixtures
in optical lattices.
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Chapter 7

Conclusion

In this thesis, I have described a versatile and simple moving-coil transporter
apparatus for the production and study of magnetically and optically-trapped
Bose-Einstein condensates. Further, I have reported on our first experiments
using hyperfine-state mixtures of ultracold atoms in a state-selective optical
lattice potential, which span from the strongly correlated regime to the field
of nonlinear atom optics.

Using our BEC apparatus, in which the movable quadrupole coils are also
used as an essential part of the final magnetic TOP trap, we have obtained
the first BEC in downstate New York. In experiments with optically-trapped
Bose-Einstein condensates, the quadrupole coils can be retracted before quan-
tum degeneracy is reached, providing large optical access. Our apparatus
has proven to be well-suited for experiments with optical lattices, as we have
demonstrated by observing the superfluid-to-Mott insulator transition [90].

Further, we have observed many-body interaction effects in a homonuclear
bosonic mixture in a three-dimensional optical lattice with variable state de-
pendence along one axis [107]. Near the superfluid-to-Mott insulator transition
for one component, we have found that the presence of a second component can
reduce the apparent superfluid coherence, most significantly when the second
component either experiences a strongly localizing lattice potential or almost
none at all. We have examined this effect by varying the relative populations
and lattice depths, and have discussed the observed behavior in view of recent
proposals for atomic disorder and polaron-induced localization.

We have demonstrated atomic four-wave mixing of two-component mat-
ter waves in a collinear geometry with macroscopic mode populations [115].
Starting from a single-species Bose–Einstein condensate, we have prepared
seed and pump modes through microwave state transfer and state-selective
Kapitza–Dirac diffraction. We have observed how four-wave mixing subse-
quently populates the initially empty output modes, in very good agreement
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with simulations based on a coupled-mode expansion of the Gross–Pitaevskii
equation. We have shown that four-wave mixing can play a role in studies of
homonuclear bosonic mixtures in optical lattices. Moreover, our system of in-
ternal and momentum modes coupled via four-wave mixing might have future
applications in sub-shot noise atom interferometry [47].

In conclusion, the experimental system that we have realized over the
course of the last few years has allowed us to perform a wide range of exper-
iments involving two-component bosonic mixtures in state-dependent lattice
potentials. Beyond the experiments I have described in this thesis, we have
been able to demonstrate Bragg diffraction of a matter wave from a dilute
atomic crystal [128], which can be used as a sensitive probe of the structure
and long-range order of the atomic crystal. Further, we have by now more ex-
tensively explored the case of a strongly localized background component [129],
which acts as a fine-grained atomic disorder potential, and have studied how
this type of disorder affects the transport and localization behavior of the fore-
ground atoms, in comparison to the pseudo-random potential created by an
incommensurate bichromatic optical lattice.

Apart from the experimental investigation of the phases of the two-
component Bose-Hubbard model such as the counterflow superfluid [15], nat-
ural future areas of study may include disordered systems [25, 26], polaron
systems [23] and phonon-mediated interactions [130], as well as decoherence
mechanisms and quantum dissipative systems [20, 21].
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Appendix A

Dipole Matrix Elements for
Multi-level Atoms

In this this appendix we explicitly calculate the dipole matrix elements for a
multi-level atom interacting with a classical light-field.

A.1 Atom-light interaction

The atom-light interaction Hamiltonian assuming a classical light field E is

Hali = −d̂ · E(r, t) (A.1)

with the dipole operator d̂ = −e r̂. In terms of the polarizability it is

Hali = −1

2
E†α̂E. (A.2)

Writing the interaction Hamiltonian in the basis of the atomic eigenstates
|i〉 we obtain the matrix elements

〈j|Hali|i〉 = e 〈j|r̂ · E|i〉 = e

∫
d 3r ψ∗j (r)ψi(r) r · E(r, t), (A.3)

where ψi(r) = 〈r|i〉. Since the spatial variation of the electric field is usually
very small over the size of the atomic wave functions, the electric field can be
regarded as uniform over the size of the atom, and can be pulled out of the
integral. This leads to

〈j|Hali|i〉 = e 〈j|r̂|i〉 · E = e

(∫
d 3r ψ∗j (r)ψi(r) r

)
· E ≡ edji · E. (A.4)
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(a) (b)

Figure A.1: The two possible second order perturbation theory diagrams to
calculate the light shift. The dotted line represents the atom, the wavy lines
represent quanta of the radiation field. Time is in the horizontal direction. (a)
The atom absorbs light and gets into an intermediate higher internal state, then
reemits the light, going back to the original state. (b) The opposite process is
also possible, i.e. the atom emits light and goes into a lower internal state, and
then reabsorbs a quantum from the radiation field. This process corresponds
to the counter-rotating term that is usually neglected in the rotating wave
approximation.

The here defined dipole matrix elements dji accordingly have the property

d∗ji = dij, (A.5)

which simply means that the dipole matrix (actually there are three) is Her-
mitian.

A.2 Optical Dipole Potential

The optical dipole potential corresponds to the spatially varying light shift
of the atomic energy levels that they experience in an light field of varying
intensity. The light shift for a multi-level atom can be calculated to very good
approximation by treating the atom-light interaction −d ·E as a perturbation.
To leading order one obtains

∆Ei =
∑
l 6=i

|〈l|d · E|i〉|2

Ei − El
=
∑
l 6=i

|dli · E|2

Ei − El
=
∑
l 6=i

(E · dil) (dli · E)

Ei − El
(A.6)

with dli ≡ 〈l|d|i〉 = d∗il. There is no first-order correction, since the dipole
matrix element between same states vanishes due to parity.

It should be noted that the energy of the intermediate state El is not simply
the eigenenergy of the atomic level, but it includes the state of the radiation
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field, which has lost an energy quantum to the atom in the intermediate state,
such that El = El − ~ω. Although much less probable, another possible pro-
cess is that the atom first emits and then reabsorbs a photon. In this case,
illustrated in Fig. A.1(b), the energy of the intermediate state is El = El + ~ω.
This case corresponds to the counter-rotating term usually neglected in the
rotating-wave approximation. So the denominator in (A.6) becomes

1

Ei − El
=

1

Ei − El + ~ω
+

1

Ei − El − ~ω
= −1

~

[
1

ωl − ω
+

1

ωl + ω

]
(A.7)

where ~ωl ≡ El−Ei is the energy difference between the fixed initial state and
the intermediate state l. For a laser wavelength in between the D1 and D2
lines of rubidium, the contribution of the “counter-rotating” term is less than
1 % compared to the first term and may be neglected. For 1064 nm light,
however, both terms should be retained, as the second term is already about
15 % of the first.

Here the electric field can be treated as a classical external field, since the
light produced by a laser is essentially in a coherent quantum state. We can
write the electric field at the position of the atom as

E = Re E(+)e−i ωt =
1

2

(
E(+)e−i ωt + E(−)ei ωt

)
(A.8)

where the complex vector E(+) is the “positive” frequency component of the
field, and E(−) =

(
E(+)

)∗
[67, 75, 131]. In a quantum treatment E(+) would

be a destruction operator for the electric field at a certain position [67].
Plugging this into the numerator of (A.6) and performing a cycle average

over the fast optical frequency yields

〈(E · dil) (dli · E)〉T =
1

4

[(
E(+) · dil

) (
dli · E(−)

)
+
(
E(−) · dil

) (
dli · E(+)

)]
.

(A.9)
These two terms can be identified with the two possible processes mentioned
above, so that we arrive at

〈∆Ei〉T = − 1

4~
∑
l 6=i

[(
E(−) · dil

) (
dli · E(+)

)
ωl − ω

+

(
E(+) · dil

) (
dli · E(−)

)
ωl + ω

]
.

(A.10)
Note that the numerators are not necessary equal, since total angular momen-
tum has to be conserved. In other words, depending on the magnetic quantum
number of the initial state, one of the two processes might not be possible for
circularly polarized light due to the lack of appropriate intermediate states.
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Now, the dipole matrix elements dli can be factored into a universal angular
part expressed in terms of Clebsch-Gordon coefficients and a residual reduced
dipole matrix element. For this we need to change into a spherical basis. The
orthonormal spherical basis vectors are defined as ê±1 ≡ ∓(êx ± i êy)/

√
2 and

ê0 ≡ êz. In this basis we have E(+) =
∑

q êqE
(+)
q and dli =

∑
q êqd

li
q where the

index q ∈ {−1, 0,+1}. This finally leads to

〈∆Ei〉T = − 1

4~
∑
l 6=i


∣∣∣∑q d

li
qE

(+)
q

∣∣∣2
ωl − ω

+

∣∣∣∑q d
il
qE

(+)
q

∣∣∣2
ωl + ω

 . (A.11)

In the following, we will extract the angular dependence of the dipole matrix
elements.

A.3 Factoring out the angular dependence of

the dipole matrix elements

Since the atomic energy eigenstates are eigenstates of the total angular momen-
tum as well, we can use the Wigner-Eckart theorem [50, 132, 133] to separate
the matrix element into a universal angular part and an atom specific radial
part1

dq,i′←i = 〈α′F ′m′|rq|αFm〉 = 〈α′F ′‖r‖αF 〉 〈F1mq|F ′m′〉√
2F ′ + 1

(A.12)

with the Clebsch-Gordan coefficients 〈F1mq|F ′m′〉. These can be expressed in
terms of the Wigner 3-jm symbol (which make the symmetries more apparent,
i.e. are more handy for calculations)

〈F1mq|F ′m′〉√
2F ′ + 1

= (−1)F
′−m′

(
1 F F ′

q m −m′
)

(A.13)

1We use the usual definition for the reduced matrix element as in Refs. [50, 56, 132].
Note that Steck [134] uses a slightly different convention by including the factor 1/

√
2F ′ + 1

into the reduced matrix element.
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With F = J + I and r only acting on J, we can reduce the double-bar matrix
element further [132]

〈α′J ′IF ′‖r‖αJIF 〉 = 〈α′J ′‖r‖αJ〉 (−1)J
′+I+F+1

×
√

(2F ′ + 1)(2F + 1)

{
J ′ F ′ I
F J 1

}
(A.14)

where the curly brackets denote the Wigner 6-j symbol. Also note that the
nuclear spin I is unaffected by the position operator that only acts on J,
and therefore is constant throughout, just as the electronic spin S. The new
reduced matrix element can be reduced once more due to J = L + S in the
same manner

〈α′L′SJ ′‖r‖αLSJ〉 = 〈α′L′‖r‖αL〉 ×

× (−1)L
′+S+J+1

√
(2J ′ + 1)(2J + 1)

{
L′ J ′ S
J L 1

}
. (A.15)

After plugging everything in we finally obtain

〈α′L′J ′F ′m′|r(1)
q |αLJFm〉 = 〈α′L′‖r‖αL〉 (−1)L

′+J+J ′+F+F ′−m′√
(2J ′ + 1)(2J + 1)(2F ′ + 1)(2F + 1)

×
{
L′ J ′ 1/2
J L 1

}{
J ′ F ′ 3/2
F J 1

}(
1 F F ′

q m −m′
)

(A.16)

where we already assumed the relevant values S = 1/2 and I = 3/2 in the
case of 87Rb.
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