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Abstract of the Dissertation

Bose Gases in Tailored
Optical and Atomic Lattices

by

Bryce Russell Gadway

Doctor of Philosophy

in

Physics

Stony Brook University

2012

Quantum degenerate atomic gases offer a unique platform for the
exploration of a wide variety of interacting many-body systems
in a pristine environment, based on a set of powerful tools for the
coherent control of the atoms’ internal and external degrees of free-
dom. Here, we present experimental studies of strongly interacting
bosonic mixtures in one-dimensional (1D) systems, in which the
mobilities of the two species are independently controlled with a
state-selective optical lattice. In a first experiment, we freeze out
the tunneling of one species from a binary mixture, and study the
formation of “quantum emulsion” states, where immobile atoms
serve as a static, random disorder for a more mobile species. We
investigate the 1D superfluid-to-insulator transition in the pres-
ence of this disorder, and make comparisons to the effects of quasi-
disorder from an incommensurate optical lattice. We observe en-
hanced localization in the more random potential, highlighting the
important role of correlations in disordered systems. Through a
combined measurement of transport, localization, and excitation
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spectra, we are able to obtain strong evidence for observation of a
disordered, insulating quantum phase, the 1D Bose glass.

In a second experiment, we introduce a new experimental technique
for the characterization of ultracold gases held in optical lattices.
In analogy to neutron diffraction from solids, we use atomic de
Broglie waves to non-destructively probe the spatial structure of
1D Mott insulators through elastic Bragg diffraction, and to probe
inelastic band-structure excitations of more weakly interacting 1D
Bose gases. Furthermore, we use the diffraction of matter waves
to detect the formation of forced-antiferromagnetic ordering in a
crystalline atomic spin mixture.

Lastly, we study the dynamical response of matter waves to a pe-
riodically pulsed, incommensurate optical lattice, a situation that
realizes a system of two coupled kicked quantum rotors. We observe
that the coupling induces a suppression of energy growth at quan-
tum resonances, and a localization-to-delocalization transition in
momentum space for off-resonant driving. Our observations con-
firm a long-standing theoretical prediction for the two-rotor sys-
tem, and illustrate how classical behavior can emerge from the
evolution of a simple quantum system.
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Chapter 1

Introduction

Since the first observations of Bose–Einstein condensation [1–3] in dilute atomic
gases in 1995 [4–7], atomic systems have served as an ideal testing ground for
a myriad of many-body quantum phenomena. The subsequent achievements
of quantum degeneracy in atomic Fermi gases [8, 9] and in ultracold molecular
gases [10–12] (and near-degeneracy in gases of polar molecules [13, 14]) have
made ultracold atomic physics an even more expansive and diverse arena of
study. Ultracold quantum gases allow for the investigation of hydrodynam-
ics, superfluidity, vortices and gases under rotation [15], collective enhance-
ment and suppression [16, 17], transport in optical lattices [18], ultracold col-
lisions, Feshbach resonances [19], few-body physics [20], and the BEC-BCS
crossover [21–24], just to name a few. Atomic physics thus has made connec-
tions to a variety of other fields, including but not limited to condensed matter
physics, nuclear physics, mathematical physics, and quantum information sci-
ence.

Studies of strongly correlated many-body physics [25, 26] in atomic systems
were opened up a decade ago with the experimental realization [27] of a quan-
tum phase transition between superfluid and Mott insulator [28, 29], based on
the controlled competition between tunneling and repulsive on-site interaction
energies of bosons confined to an optical lattice. More recently, explorations
of phase transitions to new quantum states have been undertaken in a number
of strongly-interacting [30–32] and weakly-interacting [33–35] systems. Many
of these have been aimed at studying systems of increased complexity in the
form of, for example, long-range interactions (such as with dipolar gases [36]),
disordered potentials [37], synthetic gauge potentials [38], and magnetic inter-
actions [39]. Due to their versatility and dynamical tunability, experiments
with ultracold quantum gases promise to be of continued importance for the
study of strongly correlated physics [25, 26], including non-equilibrium dynam-
ics [40] and quantum critical phenomena [41–43], as well as many other areas
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of study.
In this thesis, I shall discuss several experiments with systems of both

weakly- and strongly-interacting Bose gases, aimed at studying novel quan-
tum phases of matter. In particular, we have studied several effects that can
occur in strongly-interacting mixtures of bosonic gases in optical lattices, in
which the mobility of each species can be independently controlled [44, 45].
The focus of these studies has been to look at effects going beyond those found
in the single-species Bose–Hubbard model. In the case that the second species
is a superfluid supporting phonon modes, it can mediate effective long-range
(off-site) interactions between atoms of the first species. In contrast, if the
second species consists of randomly positioned atoms pinned in place, it can
act as a static disordered potential. Using such atomic impurities, we have
studied spectral and transport properties of disordered one-dimensional Bose
gases, and observed a disorder-induced shift of the superfluid-to-insulator tran-
sition [46]. The resulting state is insulating and has a flat excitation spectrum,
consistent with the formation of a quantum emulsion state [47], whose prop-
erties are similar to those of an equilibrium Bose glass [28, 48]. Furthermore,
the study of bosonic mixtures in state-dependent optical lattices has allowed
us to develop a new experimental technique, based on the scattering of atomic
matter-waves [49], which may possibly aid in future endeavors to characterize
novel quantum states. Lastly, we have explored a localization-to-delocalization
transition occurring in a system of weakly-interacting matter waves that are
periodically “kicked” by two incommensurate optical lattices [50], realizing a
system of coupled kicked quantum rotors.

Atomic mixtures in state-dependent lattices [44]

While the single-species Bose gas in
an optical lattice still presents a very
active area of study, new classes of
physical effects can be found in sys-
tems of increased complexity. In this
vein, Hubbard models involving more
than one species have been studied
both for Bose–Bose [51–53] and Bose–

Fermi [54–57] mixtures (not to mention Fermi–Fermi mixtures or studies of
SU(N) physics with multi-species alkaline-earth mixtures [58]). Aside from
studies of quantum magnetism [59–62] that one may hope to explore at very
low temperatures, novel interactions leading to physics beyond the single-
species Hubbard model, with relevance to condensed matter systems, are ex-
pected to appear in two-species mixtures.

2



In studies with atoms of different masses (or effective masses in a lattice),
lighter atoms can be used to mediate effective long-range interactions between
the heavier particles [63, 64]. This can be thought of as the heavier particles
coupling to phonons, or density excitations, in the lighter species. Phonon-
coupling is important to many phenomena in real materials (while it is absent
in optical lattices per se). In atomic systems, phonon-mediated coupling in
multi-component mixtures may, for example, lead to the emergence of super-
solidity [65]. In a study of the response of one species of atoms in a lattice to
a second superfluid species (“bath”), we observed a reduction of the appar-
ent superfluid coherence of the atoms near the superfluid-to-Mott transition.
These observations are consistent with the formation of lattice polarons [63],
composed of an atom on a given site and an induced density dip of the super-
fluid bath, resulting from repulsive interspecies interactions. In addition to a
reduction of mobility as compared to bare atoms, such a polaronic dressing of
atoms is predicted to lead to the formation of clusters due to induced off-site
attraction [63, 64].

A second effect that can be studied with atomic mixtures is the influence
of disorder. It has been proposed [66, 67] that localized atoms of one state,
randomly placed at sites of an optical lattice, can serve as a nearly ideal
form of random disorder. One advantage as compared to optical methods
(such as two-color incommensurate lattices [68] or speckle potentials [69]) is
that the correlations of such an atomic disordered potential decay on a very
short length-scale, making the disorder essentially uncorrelated from site-to-
site. For this situation, a metastable out-of-equilibrium state known as a
quantum emulsion has been predicted [47], with properties very similar to
those of a Bose glass [47, 70, 71]. In the experiment, we studied such a scenario
in the limit where an added second species is much less mobile than the first,
and observed a sharp decrease of the superfluid coherence due to interactions
with the localized species, consistent with the formation of such a quantum
emulsion.

Glassy behavior in a binary atomic mixture [46]

∆i 

U
For non- and weakly-interacting par-
ticles placed into a random poten-
tial landscape at low energies [33, 34,
72, 73], Anderson localization can oc-
cur due to destructive interference be-
tween different quantum trajectories.
It has been shown that weak repulsive interactions between particles can screen
the disordered potential and can destroy such localization [74], leading to a
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transition to a superfluid phase. On the other hand, the interplay between
disorder and interactions is less clear-cut in systems of strongly-interacting
particles, where the presence of interaction gaps (Mott-gaps) can result in in-
sulating behavior even in the absence of disorder [28, 48]. When disorder is
added, the presence of several mechanisms that each promote insulating be-
havior leads to the emergence of a new quantum phase known as the Bose
glass, which is a gapless and compressible insulator, making it distinct from
both the Mott insulator and the Anderson glass. Despite some preliminary
experiments aimed at studying this Bose glass phase [68, 69, 75], no clear
observations have been made to date.

In this experiment, we have studied one-dimensional (1D) lattice-trapped
gases of bosons subject to disorder, formed by either localized atomic impuri-
ties or by an incommensurate optical lattice. In the first case, one species of
a two-species mixture is pinned in place to a state-selective lattice, thereafter
serving as a static disorder potential for the more mobile species. As mentioned
earlier, it is predicted that the resultant disordered quantum emulsion should
behave much like an equilibrium Bose glass state. One motivation for using the
fine-grained impurity disorder [66], as opposed to standard optical disorders
(pseudorandom incommensurate lattices [33, 68] and speckle patterns [69, 75]),
is to explore the role of spatial correlation properties. For both types of disor-
der, we study the excitation and transport properties of the one-dimensional
Bose gases, and for deep lattice confinement observe behavior consistent with
the formation of a Bose glass, i.e. insulating behavior with a flat, gapless
excitation profile. However, we find that near to the expected superfluid-
to-insulator transition in 1D, the uncorrelated atomic disorder (representing
“white noise”) much more strongly drives the system towards an insulating,
localized state. These observations reinforce the notion that the details of a
disorder potential, such as its correlation properties, play an integral role in
defining the ground state and excited state properties of a system, and that
there is no universal phase diagram of the disordered Bose–Hubbard model
defined solely by the amplitude of disorder.

Probing an ultracold-atom crystal with matter waves [49]

In recent years, several approaches have been taken for the characterization
of strongly-interacting atomic gases in optical lattices. High-resolution in-situ
imaging methods based on absorption [76] and fluorescence [77, 78] imaging
of 2D planar systems have been utilized, as well as ones based on electron
microscopy [79]. The observation of new quantum phases of matter, such
as magnetically-ordered spin states and systems with non-trivial topological
properties, will likely be enabled by advanced detection techniques.
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Here, motivated by the usefulness of matter-wave scattering techniques in
various scientific disciplines, we explore the scattering of atomic matter waves
from samples of strongly correlated gases confined in optical lattices [80], pro-
viding information on spatial ordering and excitations in these systems. Our
method is analogous to the diffraction of electron and neutron de Broglie waves
from crystalline materials, but at energies that are a billion times lower. We
“shine” one-dimensional Bose gases (probe) onto a Mott insulator (target),
and observe Bragg diffraction peaks that reveal the spatial ordering and local-
ization of atoms on individual lattice sites. For weak lattice confinement, we
study excitations and inelastic scattering processes in the target, connecting
to 1D collisions between distinguishable bosons in the free-atom limit. The
elastic scattering of matter waves provides a non-destructive in-situ interroga-
tion technique, with a large tunability over the de Broglie wavelength, allowing
for the probing of structure and ordering across a wide range of length scales.
We demonstrated the versatility of our technique, as well as its suitability for
characterizing spin-ordered phases, by using atomic de Broglie waves to detect
forced-antiferromagnetic ordering in a crystalline atomic spin mixture.

Quantum dynamics of matter waves in a pulsed incommensurate
lattice [50]

According to the correspondence princi-
ple [81] the predictions of quantum me-
chanics should, in the classical limit, be in
agreement with those of classical mechanics.
However, the conditions that specify “the
classical limit” are not uniquely defined.
For non-interacting particles, the classical
limit can relate to the thermal occupation
of a large number of quantized energy lev-
els, where effects of quantization become
less important to the description of the system. It may also be reached in
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systems of a macroscopic number of interacting particles, which are faithfully
described by the predictions of classical statistical mechanics. A fundamen-
tal, outstanding problem is how exactly classical behavior emerges in closed
quantum systems, i.e. without invoking a coupling to some environment that
is divorced from the system.

Here, we study the dynamics of a system that is based on the so-called δ-
kicked rotor, in which a particle is subject to a time-periodic series of “kicks”.
In the classical case, the rotor dynamics are chaotic, giving rise to a diffusive
increase of the action variable. However, in the quantum case, interferences
lead to a suppression of growth by an effect known as dynamical localiza-
tion [82], which is analogous to Anderson localization in one dimension [83].
The system that we specifically consider consists of two coupled kicked rotors.
Here, the coupling has been predicted to induce diffusive, classical-like trans-
port behavior [84]. We realized this system, for the first time, by periodically
pulsing two incommensurate optical lattices onto an atomic Bose–Einstein con-
densate. For off-resonant kicking, we observed a breakdown of the dynamical
localization that is found in the single-rotor case, relating to a transition from
quantum to classical dynamics. Additionally, we observed a suppression of
ballistic momentum-space transport in the case of resonant kicking of one of
the rotors. Our findings shed new light on the correspondence between quan-
tum and classical dynamics in multi-dimensional systems, and provide a route
towards further experimental studies of higher-dimensional nonlinear, chaotic
systems.

Outline of the thesis

In Chapter 2, I describe some basic theoretical concepts for weakly-interacting
Bose–Einstein condensates in optical lattices. Chapter 3 provides a brief
overview of the experimental methods used for producing and for probing our
Bose–Einstein condensates. In Chapter 4, I discuss in more detail a general
method for lattice depth determination based on Kapitza–Dirac diffraction in
the long-pulse regime. Chapter 5 presents our experiments on a system of
coupled kicked quantum rotors. Chapters 6 and 7 introduce some important
theoretical and experimental methods used to describe and characterize sys-
tems of strongly-interacting bosons. In Chapter 8, I discuss our methods for
creating atomic mixtures, and for creating lattices that address the atoms in
a spin-dependent manner. I discuss in brief our study of strongly-interacting
mixtures in such state-dependent lattices. Chapter 9 presents our study of
quantum emulsion states in a one-dimensional bosonic mixture, where one
species (“impurities”) acts as an effectively random disorder potential for the
second species. In Chapter 10, I describe our experiments aimed at determin-
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ing the structural properties and excitations of strongly-interacting lattice gas
“targets” via the scattering of weakly-interacting 1D matter-wave “probes”, as
well as detecting the introduction of forced-antiferromagnetic spin-ordering in
a crystalline target. Lastly, Chapter 11 provides a conclusion and an outlook
for future endeavors.
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Chapter 2

Weakly interacting
Bose gases I:
theoretical concepts

In this chapter, we discuss some theoretical concepts that are fundamental to
the study of degenerate Bose gases in optical lattices.

2.1 Bose–Einstein condensates

Bose–Einstein condensation was predicted by Einstein in 1924 [1] to occur
for an ideal gas of massive particles obeying Bose statistics, as developed by
Bose for photons [2]. A Bose–Einstein condensate is characterized by the
“condensation” of a macroscopic fraction of particles into the single-particle
ground state. In 1938, not long after its prediction in noninteracting gases,
London proposed [85] that the λ-phenomenon (discontinuity in heat capacity)
in liquid 4He associated with the transition to a superfluid state was related
to Bose–Einstein condensation. However, strong interactions between helium
atoms greatly reduce the condensate fraction in this system, and make for a
complicated and somewhat convoluted theoretical description.

In contrast, a nearly ideal system for the study of Bose–Einstein conden-
sation can be found in dilute, ultracold atomic vapors, where typically the
spacing between particles greatly exceeds the characteristic length scale of
interactions. Following advances in the laser-cooling and trapping of neutral
atoms [86] (leading to the 1997 Nobel prize in physics [87–89]), and also of sta-
ble confinement [90] and evaporative cooling in magnetic traps [90–92], first
observations of Bose–Einstein condensation in dilute atomic vapors were made
in gases of rubidium at Boulder [4] and sodium at MIT [5] in 1995 (and also
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reported evidence [6] for BEC in lithium-7 at Rice that same year, confirmed
in 1997 [7]). The realization of BEC in dilute atomic gases (for which the 2001
Nobel prize in physics [93, 94] was awarded) has since led to great advances
in the understanding and application of this novel state of matter (for some
reviews, see for example [3, 95, 96]).

2.1.1 Non-interacting gases

The phenomenon of Bose–Einstein condensation, characterized by the emer-
gence of a macroscopic population in the ground state, can be motivated by
examining the Bose distribution function at finite temperature. Here, we con-
sider a gas in the grand canonical ensemble, with temperature T and particle
number N determined by coupling to a thermal and particle reservoir hav-
ing temperature T and chemical potential µ. The populations Ni in levels of
energy εi are given as

Ni =
1

e(εi−µ)/kBT − 1
. (2.1)

where µ is kept less than the ground state energy ε0 to avoid negative popu-
lations. If the chemical potential is made to approach ε0, N0 will diverge, and
for fixed particle number N =

∑
iNi, the population will condense into the

ground state.
We can also consider a more physical picture for the temperature-driven

transition from a normal (thermal) state to a Bose–Einstein condensate, oc-
curring in a gas of bosonic particles (atoms) at fixed density n. Furthermore, a
simple estimate of the transition temperature may be obtained in this manner,
where we relate the atoms’ thermal kinetic energy kBT/2 ∼ p2/2m (momen-
tum p) to the thermal de Broglie wavelength (coherence length) λdB ∼ h/p of
the atomic wavefunctions,

λdB = ~
√

2π/mkBT . (2.2)

For decreasing temperature, the spatial extent of the wavefunctions will in-
crease and at some point they will begin to overlap, such that distinguishabil-
ity of the atoms by spatial coordinate is lost. This defines quantum degeneracy
in the gas, occurring when the de Broglie wavelength exceeds the mean inter-
particle spacing, i.e. when

λdB & n−1/3 , (2.3)

or more accurately in free 3D space when nλ3
dB > 2.612... (ζ(3/2), where ζ is

the Riemann zeta function) [97]. For dilute gases of alkali atoms with typical
densities of 1013 − 1014 cm−3, this corresponds to temperatures in the 100 nK
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range.
In the experiments that will be described in this thesis, the starting conden-

sate temperatures are on the order of several nK, orders of magnitude below
Tc, such that thermal depletion of the condensate is negligible. In the limit
of zero temperature, atoms of a non-interacting Bose gas are all condensed
into the single-particle ground state ψ(x) of the system. For an N -particle
system, the many-particle wavefunction is just given as a product state of N
such identical wavefunctions,

ΨN(x1,x2, . . .xN) =
N∏
i=1

ψ(xi) . (2.4)

In the limit of large N , we can describe the condensate by one macroscopic
wave function, or complex order parameter,

φ(x) =
√
N〈ψ̂(x)〉 . (2.5)

Here, we have replaced the bosonic field operator ψ̂ by a classical field with
uniform global phase (relating to a spontaneously broken symmetry at the
BEC phase transition). The condensate wave function has a normalization∫
dx|φ(x)|2 = N , such that the particle density is given as n(x) = |φ(x)|2.

2.1.2 Interacting gases

In reality, interactions between atoms often play an important role, and are
necessary for describing the equilibrium and dynamical properties of a conden-
sate (and they are a necessary ingredient for reaching degeneracy in thermal
equilibrium through evaporative cooling). The Hamiltonian of a gas of inter-
acting particles in second-quantization of the field can be written as

Ĥ =

∫
dxψ̂†(x)

[
− ~2∇2

2m
+ Vpot(x)

]
ψ̂(x) +

1

2

∫ ∫
dxdx′ψ̂†(x)ψ̂†(x′)Vat(x− x′)ψ̂(x)ψ̂(x′) , (2.6)

where ψ̂†(x) and ψ̂(x) are the field creation and annihilation operators obeying
bosonic commutation relations. Here, we have included the influence of some
external potential Vpot(x), typically used to confine the atoms in space, as well
as nonlinear atom-atom interactions characterized by the two-particle interac-
tion potential Vat(x− x′). At ultralow temperatures, only the lowest s-wave
term of a partial wave expansion will contribute to the scattering amplitude
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between two atoms. With an s-wave scattering length as typically less than
the interparticle spacing in dilute gases (na3

s � 1, weakly interacting limit), we
can then effectively describe these interactions by a δ-function pseudopotential
of the form

Vat(x− x′) ≈ g · δ(x− x′) , (2.7)

where g = 4π~2as/m is the coupling constant characterizing atom-atom inter-
actions.

By transforming to the Heisenberg picture, we can write down equations
of motion describing the time evolution of the field operators as

i~∂tψ̂†(x, t) =

[
−~2∇2

2m
+Vpot(x)+g

∫
dx′ψ̂†(x′, t)δ(x− x′)ψ̂(x′, t)

]
ψ̂†(x, t) .

(2.8)

If we again (as in Eq. 2.5) assume a macroscopic wave function of the field given
by the expectation value of the creation (annihilation) operator, a nonlinear
Schrödinger equation (known in this context as the Gross–Pitaevskii [98, 99]
equation) for the matter-wave field can be written as

i~∂tφ(x, t) =

[
− ~2∇2

2m
+ Vpot(x) + g|φ(x, t)|2

]
φ(x, t) . (2.9)

Here, g|φ(x, t)|2 represents the time-dependent mean-field potential of the con-
densate, where n(x, t) = |φ(x, t)|2 is the condensate density. For attractive
interactions g < 0, this can lead to unstable condensate dynamics [100]. For
positive scattering lengths, as are typically used in experiment, the repulsive
mean-field potential simply acts to modify the ground-state wave functions.
The atomic interactions lead to an effective Hartree–Fock-type potential, which
counteracts the (typically harmonic) trapping potential Vpot(x), resulting in a
larger extent of the wave function.

By assuming a time-independent form of the Hamiltonian, and taking
φ(x, t) = ϕ(x)e−iµt/~ where µ is the condensate’s chemical potential, we can
write (

− ~2∇2

2m
+ Vpot(x) + g|ϕ(x)|2

)
ϕ(x) = µϕ(x) . (2.10)

For a sufficiently large numbers of atoms, an approximate form of the ground
state wave function can be found by neglecting the kinetic contribution to the
energy (sufficiently far away from the edges of the cloud, see below), where the
chemical potential can then be related to the density of the central or peak
condensate density as µ/g = nc. This so-called Thomas–Fermi approximation
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leads to a density profile of the form

n(x) =
µ− Vpot(x)

g
(2.11)

for regions of x fulfilling µ > Vpot(x), and vanishing density outside these
regions. We now consider a weakly interacting BEC confined to a 3D harmonic
trapping potential

Vpot(x) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2

)
(2.12)

with trapping frequencies ωx,y,z, and with mean harmonic trapping frequency

ωHO = (ωxωyωz)
1/3 and mean harmonic oscillator length aHO =

√
~/mωHO.

The Thomas–Fermi profile of a condensate in such a potential is then given
by

n(x) =
µ

g

∏
α∈{x,y,z}

(
1− x2

α

R2
α

)
Θ
[
1− x2

α

R2
α

]
, (2.13)

with Θ the Heaviside step function. Here, the chemical potential is related to
the total atom number by

µ =
~ωHO

2

(
15Nas
aHO

)2/5

, (2.14)

the Thomas–Fermi radii of the condensate along the directions xα are deter-
mined by setting

µ = mω2
αR

2
α/2 . (2.15)

In Fig. 2.1, we compare the condensate density profiles of harmonically-
trapped atoms for the cases of clouds with no interactions, with interactions,
and for an interacting condensate in the Thomas–Fermi approximation. We
see that compared to the non-interacting case, the profile is broader for a re-
pulsively interacting condensate. Also, at the edge of the distribution, the
Thomas–Fermi approximation leads to discrepancies on the order of the heal-
ing length ξ = (8πnas)

−1/2. For simplicity and clarity, and in anticipation of
the discussion in Chapter 6 on one-dimensional (1D) systems, we have plotted
the condensate density profiles for a 1D scenario, assuming particles of mass
m set to that of 87Rb and assuming a trapping frequency ω/2π = 100 Hz along
the one direction. To account for interactions, we incorporate an effective 1D
coupling constant g1D/~ = 2 × 105 m/s, and assume a fixed total particle
number N =

∫
n1D(z)dz = 150, where n1D(z) is the 1D density profile. We
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Figure 2.1: Condensate density profiles with and without atomic interactions.
The 1D density profiles n1D(z) of condensates are shown for the case of no
interactions (black, small dashing), with interactions (blue, dashed) as deter-
mined using Eq. 2.10, and with interactions in the Thomas–Fermi approxima-
tion (red, solid). Details of the assumed trapping potential and interaction
coupling can be found in the text.

note that the Thomas–Fermi approximation gives a slightly different relation
of the radius to atom number in one dimension than in three, which can be
determined by normalizing the total atom number as

N =
1

g1D

∫
[µ−mω2z2/2]Θ[µ−mω2z2/2]dz , (2.16)

where Θ[x] is the Heaviside function. This can then be solved as

2g1DN

mω2
=

∫ [
2µ

mω2
− z2

]
Θ

[
2µ

mω2
− z2

]
dz =

4

3

(
2µ

mω2

)3/2

, (2.17)

where then using µ = mω2R2/2 as before leads to the 1D Thomas–Fermi
radius R = (3g1DN/2mω

2)1/3.

2.2 Atom-light interaction

Neutral atoms interact with electromagnetic light fields in both a dissipative
and conservative manner. The former relates to transitions to excited elec-

14



tronic states by photon absorption (followed by spontaneous emission), as
used for laser-cooling and magneto-optical trapping of atoms [86]. The con-
servative interaction of atoms with light involves a “dressing” or modification
of the energy levels of the atom in the presence of the light field. Physically,
this comes about due to interaction of the light field with the field-induced
dipole moment in the atom, which leads to a shift of the atomic energy levels
(ac-Stark shift). For spatially inhomogeneous light fields, such energy shifts
can be used for trapping [101, 102] or anti-trapping ground state atoms in at-
tractive or repulsive potentials (analogous to dispersive trapping of refractive
objects). Here we consider the simplified case of a two-level atom, however we
will treat the topic of atom-light interactions more rigorously in Chapter 8 with
respect to state-dependent optical potentials involving multiple excited-state
transitions.

We consider a two-level atom with ground state |g〉 and excited state |e〉,
separated energetically by ~ω0 = Ee−Eg. We also consider a single-frequency
light field E = E0ε̂ cos(ωt−kz) with propagation along the direction z (E0 the
electric field amplitude, ε̂ the unit polarization vector), which has an angular
frequency ω = 2πν (wave number k = ω/c and wavelength λ = 2π/k), and is
detuned from the atomic resonance by an amount ∆ = ω−ω0. This light field
has a local intensity I = ε0cE

2
0/2 (vacuum permittivity ε0). Absent the atom-

light interaction term, the Hamiltonian describing the atom and the light field
is

Ĥ0 = ~ω0|e〉〈e|+ ~ω(â†â+ 1/2) , (2.18)

where â† (â) is the light field creation (annihilation) operator. We shall assume
a macroscopic population of the light field 〈â†â〉 = N ' N − 1.

We now consider the interaction term of the Hamiltonian that describes
coupling between the atom and the light field in the dipole approximation
(neglecting spatial variations of the light field on the length scale of the atom’s
electronic wavefunctions) of the form Ĥint = −d · E. In terms of the atomic
ground and excited levels and the light field operators, the interaction term
can then be expressed as [103]

Ĥint =

(
|e〉〈g|eiω0t + |g〉〈e|e−iω0t

)(
~Ω∗(z)

2
â†eiωt +

~Ω(z)

2
âe−iωt

)
. (2.19)

Here, Ω(z) = Ωe−ikz (z-dependence of Ω(z) dropped from here on), ~Ω ≡
|µ|E0 defines the Rabi frequency, where µ = e〈e|r|g〉 is the dipole moment of
the atom, and 〈e|r|g〉 is the dipole matrix element describing overlap of the
ground and excited state orbitals, where r is the electron coordinate. The Rabi
frequency of light-atom coupling will thus be given by Ω = (eE0/~)|〈e|r|g〉|.
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We now make the rotating wave approximation (RWA), where we neglect
the cross-terms with rapidly oscillating phase e±i(ω0+ω)t, which is valid for near-
resonant light fulfilling |∆| � ω0. The interaction Hamiltonian can then be
reduced to

Ĥint ≈ |e〉〈g|
~Ωâe−i∆t

2
+ |g〉〈e|~Ωâ†ei∆t

2
, (2.20)

where the first (second) term describes excitation (de-excitation) of the atom
accompanied by absorption (emission) of a photon. Starting in the ground
state, the probability of occupying the excited state oscillates at the effective
Rabi frequency Ω′ =

√
Ω2 + ∆2, with a maximum value of Pmax

e = |Ω/Ω′|2.
For large detunings |∆| � Ω the population remains within the ground state
to a good approximation.

In the case of such large detunings, coupling to the light field still has the
effect of shifting the energy levels of the ground and excited states. These
energy shifts can be determined by second-order perturbation theory, or by
direct solution of the Hamiltonian in a rotating frame [86], to be

∆Eg,e = ±~Ω2

4∆
=

3πc2

2ω3
0

Γe
∆
I , (2.21)

when the counter-rotating term can be neglected. At the right hand side we
have related the shifts back to the local intensity of the light field I, and the
excited state decay rate

Γe =
ω3

0µ
2

3πε0~c3
. (2.22)

Thus, for red detunings ∆ < 0, corresponding to laser light with a frequency
less than the atomic transition, the ground-state energy is lowered, propor-
tional to the light intensity. For spatially inhomogeneous light fields, the
atoms will then be attracted to the energy potential minima, located at posi-
tions of maximum light intensity. The atoms we study are typically confined
to an attractive optical dipole potential, formed at the focus of far red-detuned
Gaussian laser beams (Hermite–Gauss HG00 transverse modes) with intensity
distributions

I(ρ, z)

Imax
=

w2
0

w2(z)
e−2ρ2/w2(z) , (2.23)

with peak intensity Imax = 2P/πw2
0, where P is the total laser power, w0

the minimum 1/e2 radius. The beam-radius expands along the propagation
direction of the beam as w(z) = w0

√
1 + (z/zR)2, where zR = πw2

0/λ is the
beam’s Rayleigh range.

In addition to the conservative potential experienced by the ground-state
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atoms, small effects of spontaneous photon (Rayleigh) scattering remain, lead-
ing to a residual scattering rate

Γsc =
3πc2

2~ω3
0

(
Γe
∆

)2

I . (2.24)

This effect can be understood by the fact that the states with shifted energy
levels are actually “dressed” states, with contributions from the ground and
excited levels (excited-state “contamination”). We note that this scattering
rate can be obtained simply by multiplying the time-averaged excited-state
population with the excited state decay rate Γe. A rigorous derivation of Γsc
in the context of multi-level atoms will be given in Chapter 8.

2.3 Optical lattices and band-structure

In addition to using Gaussian-beam optical dipole potentials for the trapping
of neutral atoms, we also use optical lattice potentials to confine the atoms to
periodic “light crystals”. Optical lattices are formed by interfering two or more
laser beams with well-defined relative phase. In the case of a 1D lattice, this
is simply done by full retro-reflection of a Gaussian laser beam from a mirror,
which creates an optical standing wave. The potential along the direction z of
the beam will then be a periodic function, with spatial periodicity d = λ/2,
and modulation depth Vlatt. In the case of unequal local intensities in the
forward and back-reflected beams, there will also be an offset potential. We
assume that the transverse dependence of the beam intensity, due to the overall
Gaussian profile, is negligible over the size of the atomic distribution being
addressed, so that the beams forming the periodic potential can be considered
to be plane-waves. The motion along z is transformed from the case of free
particle dispersion to one described with an energy band structure, which we
now describe in detail, following the descriptions in Refs. [104, 105].

We consider the fate of a particle of mass m moving within some lattice
potential V (z) with spatial periodicity d = λ/2 (spatial frequency k = π/d),
subject to the Hamiltonian H = p̂2/2m + V (z). Solutions to this problem
are given by Bloch wavefunctions [106], which are products of plane-waves
exp(iqz/~) and periodic functions

φ(n)
q (z) = eiqz/~ · u(n)

q (z) (2.25)

with the same periodicity as the lattice potential, where the Bloch eigenstates
u

(n)
q have energies E

(n)
q . This leads to a Schrödinger equation for the u

(n)
q (z)
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Figure 2.2: Energy band structure of a 1D lattice for varying lattice depths.
We plot the band structure energies (in units of ER, folded within the first
Brillouin zone) as a function of quasimomentum q (in units of ~π/d) for lattice
depth values of s = Vlatt/ER = {0, 5, 10, 15}.

of the form

HBu
(n)
q (z) = E(n)

q u(n)
q (z) with HB =

1

2m
(p̂+ q)2 +V (z) . (2.26)

For the generic periodic potential V (z), we can write both the lattice po-

tential and the functions u
(n)
q (z) as discrete Fourier sums

V (z) =
∑
r

Vre
i2rkz and u(n)

q (z) =
∑
l

cn,ql ei2lkz , (2.27)

with integers r and l. The potential and kinetic energy terms of Eq. 2.26
respectively become

V (z)u(n)
q (z) =

∑
r

∑
l

Vre
i2(r+l)kzcn,ql and (2.28)

(p̂+ q)2

2m
u(n)
q (z) =

∑
l

(2l~k + q)2

2m
cn,ql ei2lkz . (2.29)

For purely sinusoidal potentials of the form

Vlatt(z) =
sER

2
cos(2kz) , (2.30)

where s is the lattice depth in units of the recoil energy ER = ~2k2/2m, only
two Fourier terms of Eq. 2.27 survive, Vr=±1 = sER/4.
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Figure 2.3: Spatial wave functions of the lowest-band Bloch eigenstates, for
a lattice depth of s = 5. (a) Real part of the Bloch wave functions φ

(n)
q (z)

in the lowest band (n = 0) for quasimomenta of q = 0 (blue solid line) and
q = ~k (red dashed line), i.e. at the band center and band-edge, respectively.
(b) Density of the Bloch wave functions for the same two cases as in (a).

The Schrödinger equation for the coefficients cn,ql can then be written in
matrix form as ∑

l

Hl,l′ · c(n,q)
l = E(n)

q c
(n,q)
l . (2.31)

The matrix Hl,l′ has diagonal kinetic energy contributions (2lq/~k)2ER, as
well as off-diagonal elements for |l − l′| = 1 of weight sER/4. Here, q is the
quasimomentum within the first Brillouin zone of the lattice, running from
q = −~k to ~k. For a lattice of infinite extent, q will be continuous, while
for a finite lattice with N sites it will have spacing 2~k/2N . For a given

quasimomentum q, E
(n)
q is the eigenenergy in the n-th energy band of the

lattice (below we use the convention n = 0 for the ground band, n = 1 for
first-excited, etc.) and the eigenvector c(n,q) defines the Bloch wave function
of this state.

For illustration, we show a few calculations of the band energy structure
and the Bloch wave functions (limits of l taken out to |l| ≤ 5) for a 1D
lattice. Fig. 2.2 displays band structure energies for varying lattice depth
values, illustrating the transition from a quadratic free-particle dispersion for
low lattice depths to one of flat bands with nearly uniform spacing (as in a
harmonic oscillator) for very deep lattices.

Fig. 2.3 illustrates the spatial wave functions of the Bloch eigenstates of
the lowest band (n = 0), at the center of the Brillouin zone (q = 0) and at the
band-edge (q = ~k). From Fig. 2.3 (a), we see from the real part of the wave
functions that, while the lowest band q = 0 Bloch wave function has a uniform
phase distribution, those at the band-edge have a π phase inversion between
adjacent sites (leading to a shift of the momentum peaks when projected onto
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Figure 2.4: Spatial wave functions of the localized Wannier functions in the 3
lowest energy bands, for a lattice depth of s = 5: (a) Density of the central-site
Wannier function w0(z) at top, as well as the real part of the wave function
at bottom, for the lowest band (n = 0). (b) The first-excited band (n = 1)
density and imaginary part of the Wannier function w1(z). (c) The second-
excited band (n = 2) density and real part of the Wannier function w2(z).
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Figure 2.5: Localized Wannier functions at different sites. For a lattice of depth
s = 5, we show the density distributions of localized lowest band (n = 0)
Wannier functions at the central site (blue solid line) and the neighboring
sites (green solid lines). For comparison, we show the central-site atomic wave
function in the harmonic approximation to the lattice site potential (red dashed
line). For clarity, we also show the lattice potential V (z) as a black solid line.

plane-wave states, as for time-of-flight imaging). The rather similar density

distributions (|φ(n)
q (z)|2) of these same Bloch states are plotted in Fig. 2.3 (b).

So far, we have considered a basis of Bloch states, which are delocalized over
the lattice sites. This is very suitable for the description of atomic wave func-
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tions for non- and weakly-interacting Bose gases, where the coherence length
(or spatial extent) of the atoms spans the system size. However, in many cases
an equivalent description in terms of localized wavefunctions is more appropri-
ate. This holds especially true for the case of strongly-interacting gases, where
repulsive interactions can force atomic wave functions to become localized onto
individual sites. A basis of localized Wannier functions of a particular energy
band is constructed by superpositions of the different delocalized Bloch waves
of that band. For a finite-size lattice composed of N sites, a summation over
the 2N Bloch states of the n-th band (with q ∈ {−~k, ~k}), of the form

wn(z − zj) = N−1/2
∑
q

e−iqzj/~φ(n)
q (z) , (2.32)

is used to create a localized Wannier function at site position zj, where N
is a normalization constant. In Fig. 2.4, we show the constructed Wannier
functions at the central lattice site z0 = 0 for the three lowest bands, both
the densities |wn(z)|2 and the relevant (non-zero) real/imaginary parts of the
wave functions. In the limit s→∞ where the band structure resembles that
of a harmonic potential, these Wannier orbitals map onto the Hermite–Gauss
orbitals HG0, HG1, and HG2, where the n-th such wave function has n nodes
(relating to phase-inversions).

Finally, in Fig. 2.5 we plot lowest-band Wannier functions on three adjacent
sites. As will be discussed in Chapter 6, the nearest-neighbor tunneling energy
of the n-th band is determined by the overlap of adjacent Wannier functions
wn(z) and wn(z + d),

tn = −
∫
w∗n(z)

[
− ~2∂2

z

2m
+ Vlatt(z)

]
wn(z + d)dz . (2.33)

For the ground band, a harmonic approximation to the lattice potential is typ-
ically made for deep lattices s� 1, which yields an effective width of the wave
functions σ/d = s−1/4/π and tunneling energy t/ER = (4/

√
π)s3/4e−2

√
s [107].
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Chapter 3

Weakly interacting
Bose gases II:
experimental probes

In this chapter, we briefly discuss the apparatus used to produce and study sys-
tems of ultracold atoms in our experiments. We also discuss some commonly
used techniques used for characterizing these systems.

3.1 Experimental setup

3.1.1 Laser cooling and evaporative cooling

As detailed in Refs. [45, 108–111], our experiments begin with the loading and
laser-cooling of 87Rb atoms from background vapor into a six-beam magneto-
optical trap (MOT). The optical transitions used for the primary cycling (F =
2 → F ′ = 3), repumping (F = 1 → F ′ = 2), and depumping (F = 2 →
F ′ = 2) to accumulate population in the F = 1 ground state are displayed
in Fig. 3.1. Over a course of about 10 s, during which light-induced atomic
desorption (LIAD) [112] is used to enhance the MOT-loading rate, a cloud
of ∼ 1 × 1010 atoms is loaded and cooled to a temperature below 1 mK.
The magnetic field of the MOT is then turned off for a brief optical molasses
stage, by which the atoms are cooled to around 25 µK. From the mixture of
trappable hyperfine states (|F,mF 〉 = |1,−1〉, |2, 1〉, and |2, 2〉), the atoms are
then optically pumped into the |F,mF 〉 = |1,−1〉 hyperfine ground state. The
magnetic quadrupole trap, which uses the coils of the MOT, is then turned
on at a higher magnetic field gradient (40 G/cm) to catch the cooled cloud of
atoms, yielding around 2.2× 109 atoms at around 150 µK.
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Figure 3.1: Relevant energy level-structure of 87Rb showing transitions used
for laser-cooling and imaging. Transition data is taken from Ref. [113].

Because of the relatively high background pressure of Rb atoms in the
vapor cell (∼ 10−9 torr), losses due to background gas collisions severely limit
the lifetime of the trapped atoms. To reach quantum degeneracy, at higher
density and lower temperature, we first move the atoms to a lower-pressure
region before performing evaporative cooling. For the purpose of transporting
the atoms, the Helmholtz coil pair forming the quadrupole trap is mounted
onto a two-axis mechanical translation stage, as described in Ref. [111]. This
allows for the atomic cloud to be moved from the vapor cell MOT chamber into
a separate low-pressure chamber (at . 10−11 torr, with differential pumping
between the two chambers), and then into a connected glass cell (hereafter
referred to as the “science cell”) that provides almost unobstructed optical
access. As the trap is first moved, it is also stiffened to a field gradient of
B′z = 350 G/cm to avoid losses and heating. This compression results in
an adiabatic heating of the cloud to a temperature of about 450 µK. After
a transport time of about 3 s, around 1.6 × 109 atoms remain, serving as a
starting point for the evaporative cooling to quantum degeneracy. The first
stage of evaporative cooling occurs in the linear quadrupole potential, until
the temperature becomes low enough for spin-flip Majorana losses to become
noticeable. At this point, we convert the magnetic quadrupole trap into a
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harmonic (near the trap minimum) time-averaged, orbiting potential (TOP)
trap [90], by adding a rotating magnetic bias field in the x − y plane that is
produced by two pairs of bias-field coils in Helmholtz configuration. In the
TOP trap the magnetic field is offset from zero at the trap center, avoiding
Majorana losses.

After reaching temperatures and densities near degeneracy in the TOP
trap, we then transfer a thermal cloud of atoms into a crossed-beam optical
dipole trap (ODT), formed at the intersection of two far red-detuned laser
beams, as discussed in more detail in the following section. As the magnetic
trap is slowly turned off, a magnetic bias field along the z-axis on the order
of a few Gauss is left on, serving to define a quantization axis and preserve
the spin orientation (|F,mF 〉 = |1,−1〉). A final stage of evaporative cooling
in the ODT is achieved by lowering the intensity of the trapping beams, thus
decreasing the trap depth. Evaporation resulting in essentially pure conden-
sates with no discernable thermal fraction is used to define the starting point
for all of the experiments discussed in this thesis.

3.1.2 Optical dipole trap and optical lattices

As detailed in Refs. [45, 111, 114], we produce an attractive optical dipole trap
at the intersection of two far-detuned laser beams of wavelength λ = 1064 nm,
with beam-waists (1/e2 radius) of ∼ 135 µm at the BEC position and around
1.5−2 W of power in each beam. The laser light comes from a single-frequency
(line-width ∼ 70 kHz) ytterbium fiber laser (IPG YLR LP-SF series). To
avoid interferences between the two trapping beams, they have orthogonal
linear polarizations, and also a relative frequency offset of 20 MHz to average
out residual interferences. The beams are separately fiber-coupled (single-
mode TEM00) to the position of the science cell, with PID-controlled intensity
stabilization. As depicted in Fig. 3.2, in the area of the science cell the two laser
beams, which are referred to as optical dipole trap beams 1 and 2 (ODT1 and
ODT2), are oriented along the lab axes x and y, respectively (note a different
convention of lab coordinates than in Refs. [45, 109, 114]). In addition to the
attractive Gaussian potentials of the two laser beams, in general the atoms
are also subject to the linear gravitational potential along z, such that the
trap center is offset considerably from the center of the two laser beams due
to gravitational sag.

Along with the weak optical trapping of the Bose-condensed atomic clouds,
many of our experiments make use of optical standing waves to further confine
the atoms. Depending on the number of lattices used (in a cubic geometry
with 3 orthogonal axes), this confinement can result in a one-dimensional array
of two-dimensional “pancake” gases (disc-shaped systems), a two-dimensional
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Figure 3.2: Configuration of laser beam paths in the x − y plane, as used
for imaging, optical trapping, and (x and y) optical lattices. The optical
dipole trap (ODT) is formed by two crossed laser beams (ODT1 and ODT2)
of wavelength λ = 1064 nm. Lattices along the directions of these beams,
x and y, are formed through partial retroreflection of the beams ODT1 and
ODT2, controlled by acousto-optic modulators (AOMs). Near-resonant laser
beams used for absorption imaging of the atoms are combined onto the ODT
beam path by transmission through dichroic mirrors, and removed from this
path for imaging onto a CCD camera by use of dichroic mirrors as well.

array of one-dimensional “tube” gases (rod-shaped systems), or a fully three-
dimensional array of zero-dimensional sites (restriction to a single spatial mode
per site). This allows for the study of atoms in the Hubbard regime, where
effects of atomic interactions become important. The optical lattices can be
used not just for confinement, but also for the diffraction of BECs in order to
split them up into a number of plane-wave momentum states.

The introduction of optical lattices along the lab axes x and y is effected
by retroreflecting the beams that create the optical dipole trap (ODT). It is
important to have no optical lattice present during evaporation in the ODT, to
allow for efficient thermalization of the sample. Thus, we implement a retrore-
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Figure 3.3: Configuration of optical lattice laser beam paths along the z-axis.
The beam paths for the λ = 1064 nm laser light and λ′ ∼ 785 nm light are
combined by use of a dichroic mirror, which is transmissive for λ′. Both lattices
are formed by full retroreflection from a mirror above the science cell.

flection scheme as in Refs. [76, 111], by which the amount of light reflected
back can be attenuated over seven orders of magnitude in a controlled way,
from essentially no light reflected to ∼ 10 − 20%. As depicted in Fig. 3.2,
each of the optical trapping beams pass through two acousto-optic modula-
tors (AOMs), each driven at 80 MHz, in the +1 and −1 diffraction orders,
respectively. The light is then reflected back by a mirror at normal incidence,
passing back through the AOMs upon return. This results in no net frequency
shift or variation in alignment of the retroreflected beam.

In addition to these optical lattices oriented along x and y, we also have
two optical lattices that are both oriented along the z axis. One of the lattice
beams at λ = 1064 nm is derived from the same laser light as for the ODT1 and
ODT2 beams. The second, co-propagating lattice laser beam has a tunable
wavelength operated in the ranged λ′ ∈ {770, 800} nm, typically at λ′ ∼
785 nm. This beam is derived from a Titanium-Sapphire (Ti-Sapph) ring laser
(Coherent 899) pumped by a 10 W solid-state laser at 532 nm (Coherent Verdi
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V10); more details of its spectral properties can be found in Ref. [114]. The
output of the Ti-Sapph is fiber-coupled and exits the fiber near the position
of the science cell, subject to intensity stabilization after passing through a
polarizing element. As with the imaging light, the lattice laser beam at λ′

is made to co-propagate with the 1064 nm z-beam upon passing through a
dichroic mirror, as depicted in Fig. 3.3. The polarization of the beams is set
by a quarter-wave plate phase retarder below the science cell. As discussed
in Chapter 8, this is important for the relatively near-detuned λ′ light, as the
strength of the induced dipole potential is strongly dependent on polarization.
After passing through the science cell, each of these two laser beams is then
typically retroreflected by a dielectric mirror at normal incidence to form the
optical standing wave lattices along z. As discussed in Chapter 8, additional
beam manipulation above the science cell is used to construct a moving lattice
along z, for the experiments described in Chapters 8 and 10.

3.1.3 Imaging of the atoms

To access the atomic column density distribution, we typically perform absorp-
tive imaging in time-of-flight (TOF) after turning off all confining potentials
rapidly (. 1 µs for optical potentials and . 2 ms for the magnetic traps) and
allowing the atoms to freely evolve for 10− 20 ms. For our trapping frequen-
cies, this time scale allows us to image the far-field momentum distribution
of the atoms (neglecting the influence of interactions on TOF expansion). As
depicted in Fig. 3.2, TOF imaging paths are available along both the x and y
axes. The beams used for imaging co-propagate with the optical dipole trap-
ping beams, entering and exiting through dichroic mirrors that are transmissive
for the imaging light. As described in Ref. [108, 109], we image the shadow cast
by the atoms, due to absorption of resonant imaging light, onto a CCD cam-
era (Princeton Instruments PIXIS 1024B). A typical absorption image along
x of atoms released from a 3D optical lattice is shown in Fig. 3.4 (a). The
x direction is the primary TOF imaging path used for characterizing the mo-
mentum distributions of the atomic ensembles, while y is predominantly used
for diagnostic purposes. The imaging is performed on the F = 2 → F ′ = 3
cycling transition, concurrent with optical pumping from F = 1 → F ′ = 2,
with imaging timescales between 25 and 100 µs. For experiments with hy-
perfine state mixtures, as discussed in Chapter 8, a Stern–Gerlach pulse of a
magnetic field gradient is first used to separate the different hyperfine states
in time-of-flight.

In addition to time-of-flight absorption imaging of momentum-space distri-
butions, we have also implemented in-situ imaging to provide real-space col-
umn density distributions. For this we utilize a different imaging beam-path -
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Figure 3.4: Absorption images of atoms in time-of-flight and in-trap. (a) After
18 ms of time-of-flight free expansion, atoms released from a cubic optical
lattice are imaged, providing a picture of the momentum-space distribution.
(b) Atoms imaged in-trap with no time-of-flight.

achieving higher magnification and a resolution ∼ 1 µm - that interrogates the
atomic cloud at 45◦ with respect to the time-of-flight imaging path along x, i.e.
along the axis x′ = (x+ y)/

√
2 (not shown in Fig. 3.2). An aspheric lens with

relatively high numerical aperture NA = 0.49 is used at close distance from
the science cell for imaging light collection. Real-space absorption images of
the atomic clouds are taken with the same laser light as for the TOF imaging,
and the optical trapping and lattice beams are kept on prior to and throughout
the imaging. A typical in-situ absorption image is shown in Fig. 3.4 (b).

3.2 Experimental characterization methods

3.2.1 External trapping potential

In the absence of direct in situ imaging capabilities, details of the atomic den-
sity distributions prior to release in TOF may be estimated based on knowledge
of the total atom number and details of the confining potential. While the opti-
cal dipole trap is formed at the intersection of two Gaussian beams, often in the
presence of a linear potential gradient due to gravity, we may approximate the
potential as harmonic close to the trap minimum. As discussed in the previous
chapter, a Thomas–Fermi description can be used to describe the density dis-
tribution of interacting Bose-condensed atoms in a harmonic trap. To estimate
the BEC’s chemical potential µ, as well as the spatial extent (Thomas–Fermi
radius) of the gas along the three coordinate axes R{x,y,z} = (2µ/mω2

{x,y,z})
1/2,

we measure the harmonic trapping frequencies ω{x,y,z} that characterize the

28



.5

0

-.5

0 10 20

Time [ms]

Ve
lo

ci
ty

 [v
R]

.75

.50

.25

60 70 80
ωmod / 2π [Hz]

σ v
 [v

R]

(a) (b)

Figure 3.5: Measurement of optical trap frequencies. (a) Center-of-mass dipole
oscillations (in velocity-space) of a trapped cloud along the z direction, after an
abrupt displacement of the trap center. The blue line is a sinusoidal fit to the
data yielding a trap frequency ωz/2π = 73 Hz. (b) Resonant excitation (heat-
ing) via sinusoidal modulation of the trap position. The rms velocity-width
σv of the clouds is determined after a fixed time of excitation and thermaliza-
tion. The peak response of the atomic gases to the modulation corresponds
to resonant excitation at the trap frequency. The blue line is a Gaussian fit
to the data. For each case, the velocity is given in units of vR = h/mλ, with
λ = 785 nm.

trapping potential [3] (for a discussion of our atom number determination see
Ref. [109]).

In general, we determine the harmonic trapping frequencies using two
methods: by observing center-of-mass dipole oscillations of the cloud in TOF
and by excitation of the BEC via sinusoidal modulation of the trap posi-
tion. Data obtained by these two methods are shown in Fig. 3.5. To induce
center-of-mass dipole oscillations, we shift the atoms from the trap center with
an added linear potential (magnetic field gradient), which is then quickly (in
∼ 100 µs) extinguished. The atoms oscillate back and forth about the trap
center at an angular frequency ω, which we observe through oscillations in
their TOF velocity. The data shown in Fig. 3.5 (a) are for oscillations along
z in an array of 1D gases – such that damping of the dipole oscillations by
coupling to motion along x and y is suppressed – but the method is generically
applicable.

For the case of excitation by sinusoidal modulation of the trap position, we
begin with an array of harmonically trapped 1D BECs as in the case above.
We then add a weak linear potential along z, whose amplitude is sinusoidally
modulated with a Gaussian envelope as A sin(ωmodt) exp[−(t − t0)2/2∆2

t ], for
a “wiggling time” of 2∆t ∼ 100 ms. After driving the atoms, we allow for
500 ms of thermalization time before measuring the velocity-width of the dis-
tributions along z, to characterize the amount of energy deposited into the gas.
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Figure 3.6: Pendellösung oscillations of momentum-mode populations in an
optical lattice. For weak pulses, only the lowest few momentum orders are
coupled by the applied optical lattice field, leading to Rabi-like oscillations
of the momentum-mode populations. The solid lines are fits of sinusoidal
oscillations with a Gaussian decay, observed to occur on the timescale of a few
milliseconds.

Because of parity, we expect resonant excitation for ωmod ≈ ωz. As shown in
Fig. 3.5 (b), the response shows a maximum around ωmod/2π ≈ 75 Hz, in
approximate agreement with the dipole oscillation measurement.

3.2.2 Optical lattices

Precise knowledge of the optical lattice depth is often crucial for proper inter-
pretation of observed physical effects, as well as for faithful modeling of the
experimental situation. Here, we discuss a few experimental methods used to
determine lattice depths for this purpose.

The first method that we use for lattice depth determination is based on
matter-wave dynamics in the long-pulse or channeling regime [115] of Kapitza–
Dirac diffraction [116, 117]. Beginning with a BEC at rest (quasimomentum
q = 0), a stationary optical lattice is turned on abruptly for a variable time T .
The atomic density focuses in towards the lattice potential minima, and then
defocuses back out, undergoing so-called Pendellösung oscillations [115, 118].
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Figure 3.7: Lattice depth calibration by Kapitza–Dirac diffraction. (a) Time-
of-flight diffraction patterns of BECs after pulsing by an optical lattice for a
pulse duration τ = 10 µs. With increasing optical intensity, higher momentum
orders are populated (shown in multiples of 2~kL, with kL = 2π/λL and λL =
785 nm). (b) Dependence of the fit-determined optical lattice depth (in units
of ER = ~2k2

L/2m) on the optical intensity of the lattice’s laser beams.

A simple way to understand the temporal evolution of the state is to project
the initial state, essentially a q = 0 plane wave, onto eigenstates of the Hamil-
tonian in the presence of the lattice. By virtue of the symmetry of the situa-
tion, the decomposition is only onto q = 0 states of even lattice bands (index
n = 0, 2, 4 . . .). For sufficiently weak lattices, essentially only the lowest two
such bands contribute, and the initial population can then be written as a
superposition of the states |n = 0, q = 0〉 and |n = 2, q = 0〉, with energies
E0(q = 0) and E2(q = 0). As a function of time T , these two states acquire
a difference in phase of exp[i[E2(q = 0) − E0(q = 0)]T/~]. Upon projecting
the band-states back onto a basis of plane-wave states by release in TOF, this
differential phase evolution is converted into population oscillations. We thus
expect that the frequency of the Pendellösung oscillations, for weak lattice
depths, should occur at a frequency [E2(q = 0) − E0(q = 0)]/~. From here,
one can make a comparison to band-structure energy calculations to determine
the lattice depth. We show in Fig. 3.6 an example of such Pendellösung oscil-
lations in a lattice along z of wavelength λz = 1064 nm. From the observed
oscillation frequency ω/2π ≈ 11.2 kHz, we determine the lattice depth to be
sz = 5.68(2) ER. We remark that the oscillations are observed to decay on
the timescale of about 1-2 milliseconds, for which dissipation through atomic
interactions [119] and higher-band tunneling are the most likely causes.

The second, related method investigates the response of atoms to lattice
pulses in the short-pulse or phase-grating regime [115, 117], also known as
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the Raman–Nath regime. In this short pulse limit, the atom’s motion during
the duration of the pulse can be ignored. Therefore, the dominant effect of
the applied pulse is to imprint a spatially varying phase pattern onto the
condensate, of the form exp[iVL cos2(kLz)τ/~], where kL = 2π/λL is the wave
number and λL is the wavelength of the lattice light, τ is the duration of
the pulse, and VL is the depth of the lattice. Expanding the wavefunction
in a plane-wave basis of states with momenta pn = 2n~kL [120–122], starting
with a stationary condensate at p = 0, one finds that the coefficients of the
different plane-wave orders after application of the pulse can be approximated
as cn = (−i)ne−iVLτ/2~Jn(VLτ/2~), where the Jn are Bessel functions of the
first kind. Thus, from populations of the form Pn = |Jn(VLτ/2~)|2, one can
determine the lattice depth VL. More generally, effects of finite pulse length
– covered more in the following Chapter – can be accommodated through a
simple solution of the Schrödinger equation for a p = 0 initial state, solving a
set of coupled equations of the form

ċn = −i4n
2ER
~

cn − i
VL
4~

(cn−1 + cn+1) , (3.1)

where ER = ~2k2
L/2m is the recoil energy. In Fig. 3.7, we show data for

a typical calibration of lattice depth (as a function of laser beam intensity)
based on comparisons of experimental momentum distributions and solutions
of Eq. 3.1 for a fixed pulse duration of τ = 10 µs.

Each of the methods described thus far relies on starting with all of the
atoms in a single quasimomentum state. For certain systems, in particu-
lar those consisting of spin-polarized fermions, these methods fail. The last
method we explore is based on lattice amplitude modulation spectroscopy,
which can be used in systems that lack matter-wave coherence. Here, we start
with atoms loaded into very deep optical lattices, such that the lowest bands of
the lattice are essentially flat. We then sinusoidally modulate the depth of the
lattice, which near to the lattice minima performs an even parity z2 pertur-
bation. This perturbation can directly couple lattice bands whose indices are
separated by even integers. The excitation can also be viewed as a two-photon
Raman process, in which the modulation effectively adds frequency sidebands
onto the laser beams. When the frequency of modulation matches the the
frequency spacing between such sets of bands (in the atomic limit for deep
lattices one can think of the spacing between lattice orbitals s, p, d, f, g, . . .),
resonant (and parity-conserving) excitation of population to higher bands can
occur.

To directly detect the population of atoms in different lattice bands, a
standard procedure known as band-mapping [123] can be used. Here, a rela-
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Figure 3.8: Lattice amplitude modulation spectroscopy of band-structure.
(a) Even excitations can be made to higher bands, preserving parity of the
atomic orbital wavefunctions (i.e. s → d and d → g allowed, s → p dis-
allowed). By scanning the frequency ω at which we sinusoidally modulate
the lattice amplitude, and monitoring the percentage change of ground-band
atoms (following a band-mapping procedure), we can spectroscopically de-
termine the transition frequencies to higher lattice orbitals. Plotted at the
top is the modulation energy scale in units of ER. By comparison to band-
structure calculations, we determine the lattice depth to be 54 ER. The dip
at ∼ 53 kHz is a direct (two-photon Raman) transition to the second-excited
band, while the feature at ∼ 27 kHz is due to a higher-order processes (with
odd-parity excitation ruled out by an absence of population in the first-excited
band). (b) For stronger amplitude of modulation at resonance, we can leave
the linear-response regime and observe partially coherent dynamics in the band
populations P0, P2, P4 (s, d, and g orbitals) as a function of modulation time.

tively fast ramp-down of the lattice is performed, typically on the timescale
τBM ∼ 1 ms, slow enough to prevent redistribution of population between
bands, fulfilling ~/τBM � ∆gap, with ∆gap the bandgap. Once the lattice is
ramped off and there is a free-particle dispersion, the atoms originally residing
in different bands will have momenta such that different Brillouin zones are
populated in TOF. In Fig. 3.8 (a), we plot as a function of modulation fre-
quency the fraction of atoms remaining in the lowest band (n = 0), following
10 ms of lattice amplitude modulation (at ±5%, after a 0.85 ms bandmap). In
the frequency range explored, the population removed from the lowest band
is observed to populate the n = 2 band. We also note that these measure-
ments are performed with amplitude modulation of the lattice along the y-axis,
starting from a Mott insulator of atoms confined along all three axes (lattice
depths V{x,z} = {40, 30} ER along the other axes) with a lattice wavelength
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of λ = 1064 nm along all axes. From the modulation spectra, we deter-
mine an energy spacing between the ground and 2nd-excited band of 26 ER
(ωmod/2π ≈ 53 kHz), corresponding to a lattice depth along y of Vy = 54 ER.

While this data is taken for relatively small amplitude of modulation, for
larger amplitude “wiggling” we can drive the system well out of the linear
response regime. In Fig. 3.8 (b), we show data for on-resonance modulation of
the y-lattice amplitude [for slightly different conditions than in Fig. 3.8 (a)],
which shows slightly coherent evolution of the population within the lowest and
the second- and fourth-excited bands. More fully coherent dynamics should
result for phase modulation (“shaken” lattice), which couples the lowest and
the first-excited band, where the lower natural linewidth (tunneling rate) of
the excited state provides for a more fully closed transition.
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Chapter 4

Analysis of Kapitza–Dirac
diffraction patterns beyond the
Raman–Nath regime

In this chapter, we report on an experimental study of Kapitza–Dirac diffrac-
tion of matter waves from (temporally) short and not so short optical lattice
pulses. We find that when pulse area is conserved, a longer pulse leads to less
matter-wave diffraction. We find that for sufficiently weak pulses, the usual
analytical short-pulse prediction for the Raman–Nath regime continues to hold
for longer times, however with a reduction of the apparent modulation depth
of the standing wave. We quantitatively relate this effect to the Fourier width
of the pulse, and draw analogies to the Rabi dynamics of a coupled two-state
system. Our findings, combined with numerical modeling for stronger pulses,
are of practical interest for the calibration of optical lattices in ultracold atomic
systems. This chapter reproduces our publication Analysis of Kapitza–Dirac
diffraction patterns beyond the Raman–Nath regime, Opt. Express 17, 19173
(2009) [122].

4.1 Introductory discussion

The diffraction of matter-waves from a standing light wave is a fundamental
concept in atom optics [124, 125]. Originally predicted by Kapitza and Dirac
[116] for electrons more than 75 years ago (and recently also observed for these
[126]), it was first demonstrated in the 1980s with an atomic beam [117], a
decade later with cold atoms [127], and has since become a standard tool in
atom interferometry for the coherent mixing of momentum modes [125, 128].
The advent of Bose-Einstein condensates in the 1990s [95] has made it possible
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to directly observe the dynamics of matter-wave diffraction in time-of-flight
images [115, 129, 130]. Moreover, the diffraction of condensate atoms from
standing light waves finds applications in high-resolution spectroscopy [131]
and metrology [132, 133], and plays a fundamental role in superradiance [134,
135].

When atoms diffract from a standing light wave, each two-photon (absorp-
tion / stimulated emission) scattering event changes the atomic momentum
along the standing wave by either zero or two photon momenta, which for
multiple such events results in a series of evenly spaced atomic momenta. Two
scenarios can generally be distinguished, depending on the presence of a reso-
nant coupling. In the Bragg case, the atoms oscillate between two resonantly
coupled momentum states, depending on the strength and duration of the
interaction with the light field [136]. If the Bragg condition is not met (off-
resonant case), atoms can nevertheless be diffracted into a number of momen-
tum states, provided that the interaction is sufficiently short and strong [117].
In accordance with a common convention in atom optics [137] we refer to this
case as Kapitza–Dirac diffraction, but we extend it to include times beyond
the Raman–Nath regime. In this context, it is interesting to note a similar
discussion for the diffraction of light from sound waves in acousto-optic devices
[120].

In the Raman–Nath regime, i.e. when atomic motion during the interaction
with the light field can be neglected, the populations of the diffracted states
exclusively depend on the product of the strength V0 and the duration τ of the
interaction, i.e. the area of the applied pulse [117]. Outside the Raman–Nath
regime, the diffraction dynamics exhibits collapses and revivals for constant
interaction strength [115, 129, 130]. We now specifically analyze the case
of a pulsed interaction of variable duration but constant pulse area. This
allows for a study of the breakdown of the Raman–Nath prediction and, in
particular, for a quantification of deviations when the system is close to, but
not deep into, the Raman–Nath regime. The findings of our study are of direct
interest for the elimination of systematic errors in calibration measurements for
experiments with ultracold atoms in optical lattices [18, 26] when the lattice
depth is determined via Kapitza–Dirac diffraction.

This Chapter is organized as follows: Section 4.2 reviews general aspects
of the matter-wave diffraction from a one-dimensional optical lattice, while
Section 4.3 briefly describes our experimental system. In Section 4.4 we ana-
lyze diffraction patterns for weak pulses, and give an analytical modification
to the Raman–Nath diffraction formula, which is motivated by a comparison
of the diffraction dynamics with that of a coupled Rabi system, as well as by
considering the spectral properties of the pulse. Section 4.5 discusses the more
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complicated dynamics of strong pulses, and Section 4.6 deals with calibration
methods for the depth of optical lattices, comparing numerical simulations
with single-shot diffraction patterns not restricted to the Raman–Nath regime.

4.2 Raman–Nath regime

We first briefly review general aspects of the diffraction of a condensate from
a standing light wave with wavenumber k = 2π/λ that is switched on for
a duration τ . The standing wave gives rise to a sinusoidal optical potential
V0 cos2 kz [18]. The evolution of the condensate in the standing wave can then
be modeled [121, 138] (neglecting mean-field interactions) as that of a matter
wave ψ subject to the Hamiltonian

Ĥ = −(~2/2m)∂2
z + V0 cos2 kz (4.1)

where m is the atomic mass. Expanding the condensate wave function in
the basis of plane waves populated by diffraction from a standing wave as
ψ(t) =

∑
n cn(t) ei2nkz (where n = 0,±1,±2, . . . and cn(t = 0) = δn,0) and

introducing the dimensionless parameters

α = (E(2)
r /~) τ (4.2)

β = (V0/~) τ, (4.3)

(where E
(n)
r = (n~k)2/2m denotes the n-photon recoil energy, with E

(1)
r ≡

Er), transforms the time-dependent Schrödinger equation into a set of coupled
differential equations

i
dcn
dt

=
α n2

τ
cn +

β

4τ
(cn−1 + 2cn + cn+1) (4.4)

for the amplitudes cn(t) of the diffracted orders n. For a given lattice depth,
the highest momentum order (±2n~k) capable of being populated is given by
the cutoff

n̄ =
√
β/α (4.5)

for which the potential energy is fully converted into kinetic energy (cf. [130]).
Note that in these equations, α is the pulse duration τ in units of the 2-photon
recoil time τ

(2)
r = ~/E(2)

r , and β measures the area of the pulse.
The dynamics of the condensate in the standing wave depends on the

ratio between αn2 and β, i.e. between the kinetic energies acquired during
diffraction and the depth of the potential. The Raman–Nath approximation
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consists of neglecting the αn2 terms in Eqs. (4.4), which is justified if τ is
much shorter than the harmonic oscillation period in a potential well [115],

such that τωho � 1, with ωho = [V0E
(2)
r ]1/2/~, or equivalently βα� 1. In this

case, the solution of Eqs. (4.4) is cn(t) = (−i)ne−iβt/2τJn(βt/2τ), such that the
population Pn = |cn|2 of the nth diffracted order after application of the pulse
is given by

Pn = J2
n

(
β

2

)
, (4.6)

where the Jn are Bessel functions of the first kind.

4.3 Experimental procedure

In the experiments described in this Chapter, we subjected an optically trapped
87Rb Bose-Einstein condensate to a vertically-oriented, pulsed standing light
wave at 1064 nm, for which the 2-photon recoil time τ

(2)
r ≈ 20 µs. In brief, in

a nearly isotropic crossed-beam optical dipole trap we produced condensates
typically containing 5× 105 atoms in the |F = 1,mF = −1〉 hyperfine ground
state without a discernible thermal fraction. The standing light wave, with a
Gaussian 1/e2 radius of 130 µm at the position of the condensate, was derived
from a single-frequency ytterbium fiber laser with a linewidth of 70 kHz and
could be switched off within 1.5 µs using an acousto-optic modulator. Imme-
diately after application of the pulse, the atoms were released from the optical
trap and allowed 15 ms time-of-flight. They were then, in 100 µs, simultane-
ously repumped to F = 2 manifold and imaged on the cycling transition using
near-resonant absorption imaging.

A series of images taken for pulses of variable duration τ but with constant
pulse area β = 4.5 is shown in Fig. 4.1. Based on a naive invocation of Eq. (4.6)
for the Raman–Nath regime one would expect the same diffraction pattern in
all the images. Instead, the number of diffracted orders is seen to generally
decrease with the duration of the pulse, with an oscillatory decay of the first
diffracted orders for long pulse durations.

The populations of the 0~k and ±2~k momentum orders in the series of
Fig. 4.1 are shown in Figs. 4.2 (a) and (b), together with corresponding data
for a weaker standing wave with β = 1.5, for which diffracted orders 2n~k
with |n| > 1 are not populated over the full range of pulse durations. For the
larger area pulse with β = 4.5, this is only the case for pulse durations of at
least 90 µs, due to contributions of the ±4~k orders, as shown in inset (c).
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Figure 4.1: Time-of-flight (TOF) absorption images of a condensate diffracted
from a 1064 nm standing-wave optical pulses of constant area β = V0τ/~ = 4.5,

and varied durations, ranging from τ = 4 µs (α = τ/τ
(2)
r ≈ 0.2) to 360 µs

(α ≈ 18). For the data with durations τ & 90 µs (for which [β/α]1/2 . 1.0),
the apparent modulation depth of the standing wave undergoes an oscillatory
decay consistent with the form (β/2)sinc(α/2), as described in the text.

4.4 Weak-pulse dynamics

For sufficiently weak pulses with a cutoff n̄ ≈ 1 for which only the lowest orders
±2~k are populated, Eqs. (4.4) can be reduced to three coupled equations; this
approximation is valid for shallow potentials V0 . 4Er. The solutions c0 and
c±1 to Eqs. (4.4), which can be obtained in a straightforward way, then lead
to

P±1 =
β2

2β2 + 4α2
sin2

(√
β2/2 + α2

2

)
(4.7)

and P0 = 1−2P±1. This can be cast into the standard form of a Rabi oscillation

P±1 =
1

2

(χ
Ω

)2

sin2

(
Ω

2
τ

)
(4.8)

with generalized Rabi frequency Ω = [χ2 + ∆2]
1/2

, resonant coupling χ =

V0/
√

2~ and detuning ∆ = E
(2)
r /~ = ω

(2)
r between the atomic momentum

states 0~k and ±2~k. Another way to interpret this result is the following:
each scattering event that changes the atomic momentum from 0 to ±2~k by
energy conservation leads to a frequency mismatch of the scattered photon
by ∆ with respect to the standing wave, requiring a corresponding Fourier
width of the pulse for stimulated scattering to be able to occur. Consequently,
the drop-off of populations in higher orders with increasing α can be seen as
resulting from the decrease in the Fourier width of the square pulse which, in
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Figure 4.2: Suppression and revival of atomic diffraction from a constant-area
standing wave light pulse with increasing pulse length. (a and b) Relative
populations of the central condensate 0~k and orders ±2~k vs. normalized
pulse duration α = τ/τ

(2)
r ∼ τ/20 µs. Filled blue dots and open red squares

refer to pulses of area β = 4.5 (cf. Fig. 1) and 1.5, respectively, and the solid
lines plot the function J2

n[(β/2)sinc(α/2)]. The dashed black lines correspond
to numerical fits for β = 4.5. (c) Decay of the ±4~k orders in the β = 4.5
data set, with the numerical simulation (dashed line) as well as the func-
tion J2

2 [(β/2)sinc(α/2)]. (d) Behavior of βeff/β, where the atomic diffraction
patterns are fit with the distribution J2

n(βeff/2). The black solid line is the an-
alytical form sinc(α/2), and the dashed black line corresponds to a numerical
solution of Eqs. (4.4) using β = 4.5.

some analogy to the treatment of sound-wave diffraction in [138], results in a
more general modification of Eq. (4.6) to

Pn = J2
n

(
β

2
sinc

α

2

)
, (4.9)

where the sinc function arises from the Fourier transform of the square pulse.
Indeed, the populations P0,±1 predicted by Eq. (4.9) agree with those of
Eq. (4.7) up to O(α2β2), independent of the pulse duration α or pulse area β.
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For [β/α]1/2 ≤ 1, the agreement of Eq. (4.9) with the experimentally observed
patterns is excellent, as can be seen in Figs. 4.2 (a) and (b).

It is interesting to note the connection of Eq. (4.9) to the resonant case
of nth order Bragg diffraction from a moving standing wave (with a relative
detuning δω = n2∆ between the two beams). In this case, the Fourier trans-
form of the applied potential V0 cos2(kz + δω t/2) with duration τ would lead
to a frequency distribution ∝ sinc[(ω − δω)τ/2] (i.e. identical to that of the
standing wave case, but shifted by δω) making available the resonant frequency
component, independent of the pulse duration.

The form of Eq. (4.9) shows that although the populations Pn in a spectrum
may follow a Bessel distribution as predicted by the Raman–Nath Eq. (4.6),
a fit will not necessarily return the correct modulation depth. The apparent
pulse area in Eq. (4.9) is given by βeff/2 = (β/2)sinc(α/2), which means that
for a pulse of duration τ , the apparent modulation depth of the standing wave
extracted from a diffraction spectrum is reduced from its short-pulse value
V0 = ~β/τ to V0,eff = ~βeff/τ , i.e.

V0,eff = V0 sinc
(
τ/2τ (2)

r

)
. (4.10)

The apparent pulse area returned by a fit of Eq. (4.6) to the diffraction
patterns is shown in Fig. 4.2 (d) for both the β = 4.5 and β = 1.5 data sets. For
the latter, the fit results agree with Eq. (4.10) over the full range, consistent
with the fact that orders |n| > 1 are not populated. The first-order revivals can
thus be interpreted as arising from a sampling of the Fourier transform of the
pulse. For β = 4.5, the observed behavior still shows qualitative agreement
with revivals from sampling of the sinc-shaped frequency distribution with
increasing pulse duration τ , but clearly exhibits deviations when higher-order
momentum states are present.

4.5 Strong-pulse dynamics

For more intense pulses with n̄ = [β/α]1/2 > 1, the simple generalization of
Eq. (4.9) no longer holds, as is evident by the large discrepancies in Fig. 4.2
for α < 4.5 (τ < 90 µs) in the β = 4.5 data set.

The presence of higher diffraction orders leads to population decays that
are faster than those determined by the two-photon timescale in Eqs. (4.9)
and (4.10). This is shown in inset (c) of Fig. 4.2 for the ±4~k (n = 2)
orders, which require the exchange of four photons in the transition from 0~k.
In general, the presence of many higher momentum orders will complicate
analytic descriptions of the diffraction dynamics.
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Figure 4.3: (a) Comparison of experimental diffraction spectra and numerical
fits. For each data set, numerical simulations [using Eqs. (4.4)] of the momen-
tum state distribution are shown as solid, dashed, and dotted curves for the
0~k, ±2~k, and ±4~k diffraction components, respectively. The red crosses
are data for the 0~k order, and the blue open squares (green filled dots) are
data averaged for the ±2~k (±4~k) orders. (b) Comparison of numerical lat-
tice depth calibrations [using Eqs. (4.4)] from relatively short (8 µs) and long
(50 µs) optical lattice pulses for various intensities of the standing light wave.
The results for numerically-fit lattice depths agree to within 4% (the solid line
has a slope of 1).

Nevertheless, it is possible to accurately describe the observed dynamics
by numerical integration of the coupled differential Eqs. (4.4), truncated for
unpopulated higher orders beyond n̄. This is shown in Fig. 4.2 and Fig. 4.3 (a).

4.6 Single-shot calibration of optical lattices

In experiments with ultracold atoms in optical lattices, the tunneling rate
depends exponentially on the lattice depth V0 [18], for which an accurate
knowledge thus is essential. Unlike most other methods (cf. [18]), applying
a “short” Kapitza–Dirac diffraction pulse can conveniently reveal the lattice
depth in a single-shot measurement. However, the application of well-defined
pulses that are short enough to be deeply in the Raman–Nath regime, yet
strong enough to yield significant diffraction, can be technically challenging.
Our study quantified how the results of such a calibration measurement need
to be corrected if pulses of finite length are used.

In Fig. 4.3 we present the comparison of experimentally observed mo-
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mentum state distributions to numerical simulations, for three different pulse
lengths (8, 25, and 50 µs), as the lattice depth is varied from 0 to 65 Er. While
the observed momentum state distributions are close to the typical Raman–
Nath form Eq. (4.6) for the 8 µs pulses, this is no longer the case for longer
pulses. For all pulse lengths, numerical simulations agree well, as can be seen
in Fig. 4.3 (a). The lattice depth calibrations for the three pulse durations,
determined by comparison of experimental data to numerically simulated pat-
terns, agree to within 4%, as can be seen in Fig. 4.3 (b) for the extreme cases
of 8 and 50 µs. Despite the complicated form the dynamics take, one can
thus obtain a reliable lattice depth calibration even with longer pulse dura-
tions. We have independently verified the method described here with another
single-shot calibration method for deep lattices (adiabatic lattice rampup, fol-
lowed by a sudden projection of the ground band population onto the ±2~k
plane-wave states [139]), for which we found comparable agreement to within
10%.

4.7 Concluding remarks

We have studied Kapitza–Dirac diffraction of a Bose-Einstein condensate in a
pulsed standing light wave, considering the case that the pulse area remains
constant as the pulse duration is varied. We find that for sufficiently weak
pulses exciting only the ±2~k orders, the usual analytical short-pulse pre-
diction continues to hold for longer times, albeit with a modification of the
apparent modulation depth of the standing wave. We relate this effect to
the frequency spread of the square-wave pulse, and also draw analogies to the
Rabi dynamics of a coupled two-state system. Our findings are of practical
interest for the calibration of optical lattices in ultracold atomic systems, and
we show that for a general length and strength pulse, relatively simple (ne-
glecting mean-field effects) numerical modeling can be used well outside the
Raman–Nath regime to accurately determine the lattice depth.

43



Chapter 5

Quantum dynamics of matter
waves in a pulsed
incommensurate lattice

In this Chapter, we experimentally study the dynamical response of weakly-
interacting atomic matter waves to a periodically pulsed optical lattice formed
by two standing-waves of incommensurate spatial periodicity. While periodic
driving with a single standing wave results in ballistic spreading of momentum
wavepackets at quantum resonances and dynamical localization otherwise, we
observe radically different behavior with the pulsed incommensurate lattice.
Here, the spatial quasidisorder causes a suppression of momentum growth at
resonance, and delocalization in momentum space for off-resonant driving.
The observed breakdown of quantum interference effects can be explained by
a mapping to a system of coupled kicked rotors, which has been predicted
to display classical-like behavior even for a purely quantum evolution. This
chapter is partially based on our manuscript Quantum dynamics of matter
waves in a pulsed disordered lattice, arXiv:1203.3177v1 (2012) [50].

5.1 Introductory discussion

In isolated ultracold atomic systems, the quantum nature of matter can be
made manifest in striking ways. One example arises in the dynamics of quan-
tum chaotic systems, i.e. systems whose classical counterparts are chaotic,
and in which destructive interference can suppress the onset of chaos [140].
The δ-kicked rotor model [140] has found particular relevance in experimental
studies of driven quantum particles, as realized with cold neutral atoms peri-
odically kicked by trains of optical standing wave pulses [82]. Whereas regimes
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of fully chaotic behavior with diffusive growth of the momentum variable can
be found in the classical system, the quantum analog generically displays dy-
namical localization due to quantum interference [140–142], which is analo-
gous to one-dimensional (1D) Anderson localization [143] in real space [83].
Foundational experiments on quantum chaos in driven atomic vapors have
demonstrated such dynamical localization [82, 144]. In recent years, the use of
coherent rather than thermal sources of atoms has allowed for the observation
of ballistic spreading in momentum space [145, 146], relating to a quantum
walk [147, 148], when the frequency of δ-kicking corresponds to a discrete
energy resonance.

Studies of the contrasting dynamics of classical and quantum systems [149],
in particular those addressing how classical behavior arises in the presence
of noise [150–153] and nonlinearities [84, 154–157], are central to the under-
standing and control of quantum decoherence [158]. Such a transition towards
classical behavior was observed in early studies of δ-kicked rotors under the
influence of random noise and decoherence [159–161]. Remarkably, classical
behavior has also been predicted to already emerge in a simple driven quan-
tum system consisting of two coupled kicked rotors [84], providing hope that
the disparate behavior of quantum and classically chaotic systems may be
reconciled in the macroscopic limit.

Here, we have explored the influence of controlled spatial quasidisorder on
the dynamics of a quantum kicked rotor, which was realized with ultracold
atomic matter waves in a periodically pulsed optical lattice. We observe that
the addition of a second, incommensurate optical destroys hallmark behavior
of the kicked rotor system, namely ballistic momentum spreading at quantum
resonances and dynamical localization for off-resonant driving. We show that
our configuration effectively realizes a system of two coupled kicked rotors,
where the coupling suppresses transport at resonance and induces transport
away from it. In addition to a direct connection to the field of quantum chaos,
studies of wave propagation in disordered media (as with those in photonic
lattices [162, 163]) may also provide insight into the influence of disorder on
transport in solid materials.

5.2 Experimental procedure and kicked rotor

system

Our system consists of a nearly-pure, optically-trapped Bose–Einstein conden-
sate (BEC) of (1.4± 0.4)× 105 87Rb atoms in the |F,mF 〉 = |2,−2〉 hyperfine
ground state. The atoms are driven by pulsed optical lattices oriented along
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Figure 5.1: Atomic matter waves in a periodically-pulsed optical lattice poten-
tial. (a) A Bose–Einstein condensate is exposed to a train ofN pulses (duration
τ , separation T ) of two incommensurate standing waves with wavelengths λ1,2

and lattice depths s1,2. (b) Time-of-flight diffraction spectra (averaged over 3-
4 images) of atoms released after N = 1 and 40 kicks, for driving with a single
lattice (lattice depths s1,2 = {0, 100}). The momentum distribution along z
(integrated along y) after N = 40 kicks is shown below. (c) As in (b), but for
driving with two incommensurate lattices (s1,2 = {50, 80}). The dashed black
line at the bottom of (c), which serves as a guide to the eye, is a Gaussian
profile corresponding to diffusive spreading.

the z-axis, as depicted in Fig. 5.1 (a). We perform simultaneous pulsing by two
lattices of wavelengths λ1 = 1064 nm and λ2 = 782 nm, with wave numbers
k1(2) = 2π/λ1(2). The lattice depths are characterized as V1(2) = s1(2)ER (where
ER = ~2k2

1/2M is the recoil energy of the first lattice and M the atomic mass),
and are calibrated via Kapitza–Dirac diffraction [122]. Subsequently, we use
pulses of duration τ = 2 µs (Raman–Nath regime), spaced at a variable pe-
riod T . After applying N pulses, we immediately release the atoms and allow
them to freely evolve in time-of-flight for 16 ms before performing absorptive
imaging of momentum distributions, as displayed in Figs. 5.1 (b,c).

The system subject to a train of N lattice pulses is approximately described
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Figure 5.2: Scan of the pulse-period T revealing resonant and off-resonant
behavior. The average energy per particle, ε (in units of ER), is measured
for clouds of atoms that are subject to a train of N pulses of a standing-wave
optical lattice, of wavelength λ1 and lattice depth s1ER. (a,b) Results for a
pulse period of T ∼ 36 µs, which is off-resonant for both the first and second
lattice (λ1 = 1064 nm, λ2 = 782 nm). (c) For a pulse period of T ∼ 124 µs,
driving with the lattice of wavelength λ1 fulfills the first Talbot resonance,
such that κ/4π = 1. (d) For this same value of T , driving with the second
lattice (λ2) is off-resonant. A nearby higher-order quantum resonance is seen
for T ∼ 133 µs, with η2κ/4π = 2. The solid lines (sinc2 functionals, motivated
by the square-pulse shape) serve only as guides to the eye. The dashed lines
in each plot refer to the pulse periods that were used for off-resonant and
resonant driving.

by the 1D Hamiltonian

H = −~2∂2
z/2M + S(t)ER/2 , (5.1)
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with

S(t) = [s1 cos(2k1z) + s2 cos(2k2z)]
N∑
j=1

u(t/τ − jT/τ) , (5.2)

where u is the normalized boxcar function. The approximation ignores ef-
fects of the trapping potential (ωz/2π ≈ 30 Hz along the axis of kicking
and mean frequency ω̄/2π ≈ 20 Hz) and interactions (chemical potential
µ/h ≈ 0.3 kHz), which is justified if the total pulsing duration is kept less
than both 2π/ωz and h/µ. Also, the actual intensity profiles are slightly
smoother than the assumed rectangular shape, but with an equivalent area.
Further, approximating the pulses as δ-functions allows us to write S(t) =
[s1τ cos(2k1z) + s2τ cos(2k2z)]

∑N
j=1 δ(t− jT ), which for pulsing with a single

lattice corresponds to the standard δ-kicked rotor [82]. To make the connection
to this well-studied problem, we reexpress the Hamiltonian in dimensionless
form as

H ′ = ρ2/2 +K(φ)
N∑
j=1

δ(t′ − j) , (5.3)

with
K(φ) = K1 cos(φ) +K2 cos(ηφ) (5.4)

and η defined by the ratio η = k2/k1 ∼ 1.36, and rescaled quantities t′ = t/T ,
H ′ = (8T 2/~TR)H, φ = 2k1z, ρ = (2k1T/M)p (recoil time TR = ~/ER). Here,
the conjugate variables φ and ρ obey the commutation relation [φ, ρ] = iκ,
with an effective Planck constant κ = 8T/TR. The so-called stochasticity
parametersK1(2) = 4s1(2)τT/T

2
R serve to delineate regimes of classically regular

and chaotic motion. Resonant driving by the first (second) lattice is achieved
when κ/4π (η2κ/4π) is equal to a rational number [or in the parlance of Talbot
interference [146], when T matches a rational multiple of the Talbot time
TT = TRπ/2 (TRπ/2η

2)]. In Fig. 5.2, we plot experimental results of scans of
the pulse period T , which demonstrate growth on resonance and a lack thereof
away from it.

5.3 A system of coupled kicked rotors

In general, we may expect that adding the incommensurate lattice causes devi-
ations from behavior typical to the δ-kicked rotor. For example, the scenario of
incommensurate and irrational values of η corresponds to a quasirandom real-
space lattice [164], where the sets of momentum modes |m〉 and |n〉 coupled
by each of the two light fields have no intersection (and only sparse overlap for
most incommensurate values). The absence of direct coupling between these
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modes allows us to describe the Hamiltonian as that of an effectively 2D sys-
tem. Of course, this assumes that the momentum width of the distribution
is negligible compared to the spacing between populated modes, necessitat-
ing spatially coherent samples as in a BEC. In the discrete plane wave basis
of the lattice, |m,n〉 = |m〉

⊗
|n〉 with momenta pm,n = 2(m + nη)~k1, the

Hamiltonian can then be written as

H = HT + ~φV
N∑
j=1

δ(t− jT ) , (5.5)

where the kinetic and potential terms are, respectively,

HT = 4ER
∑
m,n

(m2 + 2ηmn+ η2n2)n̂m,n and (5.6)

φV = (TR/8T )
∑
m,n

[K1(â†m−1,n + â†m+1,n) +K2(â†m,n−1 + â†m,n+1)]âm,n . (5.7)

Here n̂m,n is the number operator and â†m,n (âm,n) is the creation (annihilation)
operator for the mode |m,n〉.

In a stroboscopic description [83], the parameters K1,2 control the strength
of tunneling within each of the two sets of non-overlapping modes, |m〉 and
|n〉, whose quasienergies (phase accrual between kicks) are given by the distri-
butions 4ERTm

2mod(2π) and 4ERTη
2n2mod(2π), which are pseudorandom

for irrational κ/2π (η2κ/2π). While the absence of mode overlap guarantees
a higher effective dimensionality, there is a coupling between the two dimen-
sions in the momentum variables, in the form of the kinetic energy cross term
8ηmnER, which arises from the fact that the system (with quadratic disper-
sion) is still physically 1D. Systems of coupled kicked rotors have been shown
to have a quantum-to-classical transition [84] even for the simplest possible
case of only two rotors. In the following, we experimentally investigate in
detail how this coupling influences the kicked rotor dynamics in our system,
both away from and at quantum resonance.

5.4 Off-resonant dynamics

We first investigate the influence of an incommensurate lattice on dynamical
localization [82], using a pulse period of T = 36 µs that is off-resonant for either
of the two lattices. When kicking with a single lattice only (K1,2 = {0, 4.6}),
the atomic population remains localized in the lowest momentum orders, as can
be seen from the TOF images in Fig. 5.1 (b). For increasing N , we observe in
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Figure 5.3: Dynamics of a BEC under off-resonant kicking in the presence
of disorder. (a) Kicking by a single lattice, with stochasticity parameter
K2 = 4.6. Shown is the per-particle energy ε as a function of kick number
N . The blue solid and red dashed lines are simulated quantum and classical
trajectories, while the black points are experimental data with statistical error
bars (empty circles for individual runs). (b) Off-resonant kicking with two
incommensurate lattices (K1 = K2 = 2.3). (c,d,e) Rate of energy growth,
∆ε/∆N , as determined from linear fits to data and simulated points in (a,b).
Filled black points are experimental, open blue disks are numerical, and error
bars represent the standard error of the linear fits. Shown are the cases of (c)
only the first lattice, (d) only the second lattice, and (e) both lattices present
with the same strength of kicking K1 = K2. Red points in (c,d) are classical
growth rates. (f,g) Measured and simulated change in the mean energy ε be-
tween N = 1 to 40 kicks as a function of K1 and K2 (8-9 sampled points in
each direction). The circles labeled 1-b and 1-c highlight data derived from
the distributions of Figs. 5.1 (b,c).

Fig. 5.3 (a) that the per-particle energy ε (in units of ER) shows no net increase
over 60 pulses. This previously observed [157] behavior is unique to the use of
degenerate gases occupying a single momentum mode, and is distinct from the
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case of dynamical localization in laser-cooled samples of atoms in magneto-
optical traps (MOTs), where the initial momentum distribution spans all of the
relevant phase-space, and where the energy growth saturates after a “quantum
break time” (tB = K2/4κ2, in units of T ), with exponential localization in
momentum-space [82, 159]. In our experiments, the pulse period (κ ≈ 3.7)
and kicking strengths (K1,2) are such that tB is less than one pulse period for
all the cases considered, such that localization sets in immediately.

A theoretical comparison based on numerical simulations, without free pa-
rameters and accounting for finite pulse length, shown in Fig. 5.3 (a), confirms
the absence of growth. We start with all population in the zeroth momentum
order |ψ0〉 = |m = 0, n = 0〉, and then describe the total evolution from one
pulse to the next by a unitary “kick” operator Û = R̂−1ÊLR̂Ê0, where Ê0

accounts for free evolution for a time T − τ . More explicitly,

〈m′, n′|Ê0|m,n〉 = δm,m′δn,n′e−i4(m+nη)2(T−τ)/TR . (5.8)

Likewise, ÊL describes evolution of the lattice eigenstates (as determined by
numerical diagonalization) during the pulse for a time τ . R̂ maps the free-
particle eigenstates onto those of the lattice. After a train of N pulses, the
atomic wavefunction is then given by |ψN〉 = ÛN |ψ0〉. From the simulated mo-
mentum distributions, we calculate both the mean per-particle energy ε and
the rms momentum width σp (in units of ~k1). While typically considering up
to ±15-20 momentum orders for each lattice, we restrict the determination of ε
and σp to |p|/~k1 ≤ 15, which corresponds to the experimentally observed mo-
menta. We note that the experimental data in Fig. 5.3 (a) differ greatly from
a computed classical trajectory (averaged over 105 individual trajectories),
which after 60 pulses has an energy of ε ∼ 200. This rules out the possibility
that classical localization (due to Kolmogorov-Arnol’d-Moser [KAM] barriers
separating classically chaotic regions [165]) causes the observed localization.
We describe briefly at the end of this chapter the determination of the averaged
classical trajectories.

We next address the effects of adding the second, incommensurate lattice.
For the case of off-resonant kicking with two deep lattices (K1,2 = {2.3, 3.7}),
as shown in Fig. 5.1 (c), the observed atomic population clearly delocalizes in
momentum space, and the momentum distribution after 40 kicks has a nearly
Gaussian distribution, which is consistent with diffusive spreading. Fig. 5.3 (b)
shows the dependence of ε on N for a similar situation with slightly weaker
kicking (K1 = K2 = 2.3). Consistently, both experiment and the simulated
quantum trajectories reveal that the energy increases with N , and that dy-
namical localization is destroyed.

To gain insight into the disorder-driven crossover from localization to delo-
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Figure 5.4: Dynamical evolution of resonantly kicked matter waves (K1 = 1.6)
in the presence an additional off-resonant drive (K2). (a,b,c) Momentum-
width σp of the atomic distribution as a function of kick number N , for a
pulse period T = 124 µs (κ/4π ≈ 1), and K2 = 0, 8, 16. Black points are data
from individual experimental runs, the blue line is a numerical calculation for
an initial plane-wave, and the dashed red curve takes into account finite-size
corrections. (d) Growth rate of the momentum width ∆σp/∆N , determined
by a linear fit to the N -dependence, as a function of K2. The simulated growth
rates (open blue circles) are scaled by a factor of 1/2 to account for effects of
finite size.

calization, we characterize the energy-growth per kick ∆ε/∆N using a simple
linear fit to the energy evolution (for 1 ≤ N ≤ 60, allowing an energy off-
set at N = 1). The rates of growth as a function of K1 and K2 are plotted
in Figs. 5.3 (c–e) for the cases K1 = 0, K2 = 0, and K1 = K2. In partic-
ular, Figs. 5.3 (c,d) show the absence of sustained growth for either of the
single-lattice cases. When simultaneously kicking with both lattices, however,
we observe in Fig. 5.3 (e) a transition to a regime of growth (a region of
weak transient growth near the transition is seen in the simulation but not in
experiment). Signatures of this crossover between dynamical localization and
delocalization are confirmed through a time-independent analysis of the single-
kick operator Û , based on a stroboscopic Floquet state analysis [83, 166], as
described in more detail at the end of this Chapter. Along the line K1 = K2,
such an analysis reveals a transition to delocalized states at a value K1,2 ∼ 2.2,
in approximate agreement with the observations of Fig. 5.3 (e).

To obtain a more complete picture of the dependence of dynamical local-
ization on the two lattice strengths, we now more fully sample the parameter-
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space of K1 and K2. Figs. 5.3 (g,f) show results for the change in ε between
1 and 40 kicks, with good qualitative agreement between data and simula-
tions. As expected, the population remains localized when only a single lat-
tice is used, while significant growth results when strongly kicking with two
lattices simultaneously. We note that our observations are in contrast to the
case of a single-lattice driven along 1D at incommensurate temporal frequen-
cies [41, 152, 167, 168], where similar delocalization is expected only for effec-
tively three or more dimensions [152, 169], as opposed to weak localization in
2D [170].

5.5 Suppression of resonant growth

We now turn to study the influence of the incommensurate lattice on a res-
onantly kicked quantum rotor, where atoms undergo ballistic transport in
momentum space (σp ∝ N). The use of a BEC precludes trivial decoherence
from a rapid loss of spatial overlap between the momentum wavepackets. We
set the pulse period to T = 124 µs, which realizes a resonance condition for
the first lattice (κ/4π ≈ 1), while the driving with the second lattice remains
off-resonant. In Fig. 5.4 (a), we observe a (nearly) linear increase in the mo-
mentum width for up to N = 20 for weak resonant kicking (K1,2 = {1.6, 0}).

The measured growth rate is a factor of two off from what is expected
based on plane-wave simulations. This deviation can be explained through
the initial rms momentum spread ∆p/~k1 ≈ 0.03 of the trapped atomic dis-
tribution, which is limited by its finite size (Thomas–Fermi radius ∼ 9 µm
along z). Fig. 5.4 (a) also plots the expected on-resonance momentum growth,
averaged over the initial momentum distribution of the sample. More explic-
itly, we assume a Gaussian distribution with momentum width σ = 0.03~k1,
and employ the analytical formula describing the mean energy per particle (in
units of ER) after N lattice pulses for particles with initial quasimomentum
β = p/2~k1

ε(β,N) =
s2

1E
2
Rτ

2

2~2

[
sin2(2πβN)

sin2(2πβ)

]
, (5.9)

which is used in and appears as Eq. (2) in Ref. [146], taken from Eq. (13) of
Ref. [171].

With the addition of a deep incommensurate lattice [with K2 = 8 and 16,
Figs. 5.4 (b,c)] the momentum growth is markedly reduced with respect to the
single-lattice case, despite a large effect of the initial kick. We again character-
ize the growth rate ∆σp/∆N by a simple linear fit in the range 1 ≤ N ≤ 20,
which reveals that this rate decreases with the strength of the incommensu-
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Figure 5.5: Simulated effective-2D dynamics of a coupled δ-kicked rotor sys-
tem. (a) Dependence of the momentum width σp on kick number N , for
the case of resonant kicking (κ/4π = 1 ; τ = 10 ns) with a single lattice
(K1,2 = {1.6, 0}, black solid line a1), and with an added deep incommensu-
rate lattice (K1,2 = {1.6, 12.8}, red dashed line a2). (b) Dependence of σp
on N for off-resonant kicking (T = 36 µs ; τ = 10 ns) with a single lattice
(K1,2 = {0, 11.7}, black solid line b1), and for off-resonant kicking with two
lattices (K1,2 = {5.8, 5.8}, red dashed line b2). The lower panels show the 2D
momentum distributions (Pm,n = |〈m,n|ψN〉|2) at N = 100 for all trajectories,
decomposed with respect to the two standing waves.

rate lattice K2, as shown in Fig. 5.4 (d). A simulation for a wider range of
kicks (and for more ideal δ-kicking exactly at resonance) suggests that the
inhibition of ballistic transport is due not to a crossover to classical diffusion
as in the off-resonant case, but rather to the onset of dynamical localization
in the strong incommensurate lattice. This becomes even more apparent upon
examining the distributions in the 2D space of modes with indices m and n of
the two lattices, c.f. Fig. 5.5 (a).

5.6 2D representation

Naturally, we expect that the mechanism underlying the suppression of reso-
nant growth should again be due to the coupling term 8ηmnER. It is clear
that when the atoms have non-zero momenta from the second lattice (n 6= 0),
this additional term destroys coherent phase revival of all modes of the first
lattice [integer 4ERTm

2/2π]. Surprisingly, however, a complete suppression
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of resonant growth is found, even though the atomic population spends a sig-
nificant amount of time in the n = 0 subspace. The suppression of coherent
growth due to strong coupling into and out of n = 0 is somewhat reminiscent
of the physics of the Kapitza pendulum [172] and of ponderomotive potentials
for charged particles, where strong off-resonant driving dynamically suppresses
transport.

Depiction of the momentum distributions in the 2D space spanned by the
two lattices also helps us to visualize the breakdown of dynamical localization
for the case of off-resonant driving. Fig. 5.5 (b) shows simulated dynamics sim-
ilar to the experimental situation in Fig. 5.3, however for couplingsK1,2 exceed-
ing those attainable in experiment. The dynamics of σp show that dynamic
localization occurs for kicking with a single lattice only (K1,2 = {0, 11.7}),
while kicking off-resonantly with two lattices (K1,2 = {5.8, 5.8}, same total
strength) gives rise to a dramatic delocalization in the 2D m-n space.

5.7 Concluding remarks

In conclusion, we have studied the dynamics of a BEC subject to a periodically
kicked quasidisordered optical lattice that is formed by two incommensurate
standing waves. We find that the addition of the second, incommensurate
lattice leads to radically different behavior from that of the standard kicked
rotor (occuring for a single lattice), characterized by a suppression of resonant
momentum spreading at quantum resonance and diffusive transport instead of
dynamical localization for off-resonant kicking. We relate these observations
to the emergence of classical behavior in a system of two coupled kicked rotors.
A possible extension of our study would be the realization the kicked Harper
model [173, 174], for kicked harmonic oscillators, with a strong nonlinear cou-
pling term. This could be studied, for example, by examining the single-site
orbital (band population) dynamics of a periodically-tilted Mott insulator,
where the nonlinear term may be controlled through either a tunable on-site
filling or via the interaction strength with a Feshbach resonance. Additionally,
a natural extension in our system would be to study a “spinful” kicked ro-
tor, i.e. by using atoms in a superposition of different spin states and driving
them with a state-dependent lattice beam. It has recently been proposed [175]
that such a system might allow for a study of the anomalous quantum Hall
effect with driven cold atoms. A simple scenario of spinful kicking, leading to
classical diffusion in momentum-space, is discussed in Appendix A.
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5.8 Supporting considerations

5.8.1 Classical dynamics

It is well known that classical localization can occur in kicked-rotor systems for
small values of the stochasticity parameter, where the classical system is not
globally chaotic but supports bounded orbits due to KAM barriers [83]. To
demonstrate that this effect does not contribute to the observed localization
in momentum space in Fig. 2 (a,c,d) of the main text (i.e. for atoms kicked
by only a single optical lattice), we compare the experimental data and the
simulated quantum trajectories of the per-particle energy ε as a function of
kick number N to simulated classical dynamics, averaged over 105 classical
trajectories. To briefly detail the determination of the averaged classical dy-
namics, each individual classical trajectory is determined by probabilistically
projecting out the particle’s momentum space wavefunction after each applica-
tion of the kick operator Û . We show in FIG. 5.6 (i-iv) the classical dynamics
of ε, as averaged over n = 10, 102, 103, and 105 individual trajectories, for the
same system parameters as used in Fig. 2 (a) of the main text [T = 36 µs ;
τ = 2 µs ; K2 = 4.6 (s2 = 100) ; K1 = 0]. For large sample sizes, the clas-
sical growth rate is found to be in fair agreement with the expected classical
diffusion constant [166],

∆ε/∆N ∼ η2V 2
2 τ

2/2~2 = 2η2K2
2/κ

2 , (5.10)

for the second lattice (2K2
1/κ

2 for the case of only using lattice 1). It is
observed that for large kick numbers, the simulated classical trajectories grow
more slowly than one would expect from the classical diffusion constant. This
deviation is due to the finite pulse length (τ = 2 µs) of the applied kicks [122],
and in FIG. 5.6 (iv) we also plot the simulated trajectories for the same pulse
area but for τ = 1 µs and 0.1 µs, showing that better agreement is reached in
the limit of δ-like pulses.

5.8.2 Floquet eigenstate analysis of Û

To gain a deeper insight into the expected response of the matter waves to a
given kick operator Û (i.e. for given pulse lengths, lattice depths, and pulse
period), we analyze the properties of the matrix Û in a time-independent
manner. While monitoring the response of the matter waves as a function
of the kick number N makes a direct connection to experiment and can dis-
cern between regimes of localization and delocalization in momentum space,
at short times it may be subject to transient behavior and small-scale fluctu-
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Figure 5.6: Averaged classical dynamics of the energy ε as a function of kick
number N for different sample sizes consisting of n trajectories, for off-resonant
kicking with the second lattice [K2 = 4.6 (s2 = 100) ; K1 = 0 ; τ = 2 µs].
(i-iv) Averaged trajectories are shown for the cases of n = 10, 102, 103, and
105 as solid red lines. In all plots, we also show as a dashed black line the
expected classical diffusion for delta-function kicks. In (iv), we also show
classical trajectories for the cases in which the pulse area is the same, but
with smaller pulse durations of τ = 1 µs (black dashed-dotted line) and 0.1 µs
(blue solid line).

ations. We are experimentally restricted to a modest number of kicks in order
to maintain a near-field treatment (i.e. assuming identical, overlapped spatial
wavefunctions for all the matter-wave fields) and to minimize contributions
from nonlinear atom-atom interactions. Motivated by pioneering work that
made a stroboscopic connection between the quantum δ-kicked rotor model
and the 1D Anderson model on a lattice [83], we study the properties of the
Floquet (or Bloch–Floquet) quasi-energy eigenstates of the kick operator Û .
For regimes in which the growth dynamics result in dynamical localization,
these Floquet eigenstates should all be localized in momentum space, while
they are delocalized in the case of diffusive growth.

We first investigate the case of kicking off-resonantly with two lattices of
equal strength (stochasticity parameter K1 = K2 ≡ K1,2), using the same
parameter values as in Fig. 5.3 (e). In Fig. 5.7 (i,ii), we plot the momentum
space distribution of the lowest energy Floquet eigenstates of Û , |ψU0 〉, for
K1,2 = 2.15 and 2.34. The plotted distributions are shifted by the mean
momentum p̄ = 〈ψU0 |p̂|ψU0 〉 to p′ = p − p̄. While the distribution is localized
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each. (i,ii) Momentum distribution of the lowest energy Floquet eigenstate of
Û , |ψU0 〉, in the plane-wave basis. The momenta p are shifted by the mean
value p̄ = 〈ψU0 |p̂|ψU0 〉 to p′ = p − p̄. For low values of the kicking strength, as
in (i), the eigenstates are localized in momentum space, while for larger values
they became delocalized as in (ii). (iii) Momentum distributions as in (i,ii) as
a function of the stochasticity parameter K1,2. Beyond a value of K1,2 ∼ 2.2
a bifurcation and delocalization of the momentum distributions is observed.
(iv) For the same range of stochasticity parameter values as in (iii), we plot
the rms momentum width σp′ of the lowest energy eigenstates of Û , which
exhibits a sharp increase across a value K1,2 ∼ 2.2.

for the weaker kicking strength, it is delocalized into two regions for the larger
strength. In fact, in Fig. 5.7 (iii) we observe a bifurcation of the eigenstate
distributions as the stochasticity parameter K1,2 is increased. We can readily
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calculate the rms momentum width σp′ of these distributions, and as shown
in Fig. 5.7 (iv) there is a sharp rise in the width across a value of K1,2 ∼ 2.2.
Not surprisingly, this value is in general agreement with the observed onset of
non-zero energy growth versus kick number in Fig. 2 (e) of the main text.

There exist certain superficial analogies between our experiment involving
atoms driven with two spatial frequencies and experiments performed with
multiple temporal frequencies, which result in an effectively higher-dimensional
localization when the frequencies are incommensurate. In order to explore this
connection, we perform a Floquet eigenstate analysis in the full parameter
space of K1 and K2. In Fig. 5.8 (i), we plot as white the regions in which
the Floquet eigenstates are localized in momentum space and as dark blue the
regions in which they are delocalized, with the criterion for delocalization be-
ing that more than 10% of the population resides further than 5.5 momentum
units (~k1) away from the most populated mode. This plot shows localization
along either axis, where dynamical localization is expected for any value of the
kicking strength when only a single lattice is used, while delocalization gener-
ally occurs beyond some line in the parameter space spanned by K1 and K2.
Much as in the case of driving with multiple temporal frequencies, delocaliza-
tion only occurs when the strengths of each of the incommensurate frequency
components are significant. We also show in Fig. 5.8 (ii) the simulated change
in ε between one and N = 40 kicks, as in Fig. 3 (b) of the main text but over
a larger range of K1 values. This plot demonstrates that qualitatively simi-
lar regions of localization and delocalization are also observed in the energy
growth dynamics.

5.8.3 Lattice incommensurability

In a theoretical treatment of the quantum kicked-rotor model with two spatial
frequencies [153], the incommensurability of the two frequencies is found to
be a necessary condition for inducing a quantum-to-classical transition in the
dynamical behavior. Moreover, this incommensurability is a well-known condi-
tion for realizing higher dimensional localization in multi-frequency driving in
the temporal domain [41, 152, 166, 168], as well as for achieving quasi-random
lattices in configuration space with multiple standing-waves [33, 46]. While ex-
perimentally we work with a fixed commensurability parameter η ∼ 1.36, here
we investigate the role of this condition through simulations of the off-resonant
and resonant dynamics.

In Fig. 5.9 (a), for T = 36 µs and τ = 2 µs, we show the expected energy
growth rate ∆ε/∆N (determined for N = 1 to 60 kicks) for atoms kicked by
two lattices of equal depth V1 = V2 = 100 ER as a function of the parameter η.
A minimum in the induced growth can be seen for η = 1, as expected. However,
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Figure 5.8: Localization-delocalization transition in the K1-K2 plane. (i) As
a function of the stochasticity parameters K1 and K2, we plot as white the
regions in which the Floquet eigenstates of Û are localized in momentum space
and as blue the regions in which they are delocalized, as detailed in the text.
A general trend of delocalization for strong kicking with both lattices, and
localization when kicking with only a single lattice, is observed. (ii) Here we
replot the simulation data from Fig. 5.3 (g), showing the change in energy
ε from the first to N = 40 kicks, but over a larger range of K1 values. Be-
havior qualitatively similar to the localization-delocalization plot in (i) can be
observed in this dynamical response data.

the dependence of the growth rate on the commensurability condition becomes
somewhat intertwined with other η-dependent effects. Most importantly, while
the wavelength of the first lattice is kept fixed at 1064 nm, the second lattice’s
wavelength varies with η, such that full or fractional quantum resonances [146]
are encountered whenever 4η2TER/h equals a rational number. To disentangle
these two contributions, we show in Fig. 5.9 (b) the growth rate dependence on
η, averaged over a large sample of pulse periods to smooth out effects of quan-
tum resonances. Specifically, we average over the randomly chosen set of val-
ues T = {36, 32, 59, 67, 98, 68, 62, 86, 84, 82, 76, 85, 48, 88, 41, 87, 99, 90, 55} µs.
Here, we observe a much clearer minimum at η = 1 for the case of full com-
mensurability.

Now we investigate the dependence of resonant dynamics on the commen-
surability of the two lattices. It was observed in Fig. 5.4 of the main text that
the addition of an incommensurate lattice reduces the growth of the rms mo-
mentum width as a function of kick number, ∆σp/∆N . In Fig. 5.9 (c) we show
the dependence of the growth rate on η for the case V1 = V2 = 10 ER with

60



0.8

0.6

0.4

0.2

0.0

0.4

0.3

0.2

0.1

0.0

0.25

0.20

0.15

0.10

η
0.6 0.8 1.0 1.2 1.4

(i)

(ii)

(iii)

∆σ
p
 /

 ∆
N

Δ
 ε 

/ Δ
N

Δ
 ε 

/ Δ
N

Figure 5.9: (a,b) Dependence of induced energy growth for off-resonant driv-
ing by two lattices on the commensurability parameter η. In (a) the growth
rate ∆ε/∆N is shown as a function of η = λ1/λ2, for kicking with two lattices
of equal strength (V1 = V2 = 100 ER for τ = 2 µs) and a pulse period of
T = 36 µs. The wavelength of the first lattice is kept fixed at λ1 = 1064 nm,
while the second is varied with η. A local minimum at η = 1 can be observed,
while other features may be due to full or fractional quantum resonances of
the second lattice. (b) Same dependence of ∆ε/∆N on η, but averaged over a
number of pulse periods T to smooth out features due to quantum resonances
of the second lattice. (c) Effect of commensurability parameter η on the break-
down of momentum growth for on-resonant kicking. The pulse period is set
to T = 123.3 µs (κ/4π = 1) to be resonant with the first lattice, with pulse
widths of τ = 2 µs and lattice depths of V1 = V2 = 10 ER. For values of η 6= 1
there is a strong suppression of the growth rate ∆σp/∆N , while local maxima
appear at η2 ∼ 0.5 and 1.5, i.e. when η2κ/4π is near a rational number.
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timings T = 123.3 µs and τ = 2 µs. A clear maximum is observed for η = 1,
as both lattices contribute to the resonant growth, while a general suppression
is observed otherwise. Smaller resonances can be observed for η2 ∼ 0.5 and
1.5, when the second lattice fulfills a fractional quantum resonance.
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Chapter 6

Strongly interacting
Bose gases I:
theoretical concepts

In this chapter, we discuss some fundamental concepts for the study of strongly
interacting, lattice-confined atomic gases, where effects of atom-atom interac-
tions are of central importance. Theoretical descriptions are given both for the
case of deep lattice confinement, where a basis of localized atomic wavefunc-
tions is appropriate, and the case of strongly-interacting 1D gases in a weak
(or vanishing) longitudinal optical lattice.

6.1 Bose–Hubbard model

A few years after the achievement of BEC [4, 5], it was realized [29] that
ultracold bosons confined to an optical lattice potential could be an ideal
experimental implementation of the Bose–Hubbard model (BHM) [28]. As
the simplest description of interacting bosons in a period potential that fully
maintains quantum correlations, the BHM is important for describing a num-
ber of experimental systems, including that of superfluid 4He in porous media,
Josephson junction arrays, and strongly-coupling BCS pairs. The experimen-
tal realization of the BHM several years later [123, 176], and the observation
of a quantum phase transition between superfluid and an insulator of bosons,
has thus been of great importance, not only with respect to study of bosonic
systems, but in paving the way for quantum emulation of non-trivial systems
with highly-controllable ensembles of ultracold atoms [27]. Here, we discuss
concepts relevant to implementation of the Bose–Hubbard model with ultra-
cold neutral atoms.
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Let us first recall the second quantized Hamiltonian describing a system
of interacting (via elastic two-body collisions) scalar bosonic particles in a
potential Vpot(x), as introduced in Chapter 2,

Ĥ =

∫
dxψ̂†(x)

[
− ~2∇2

2m
+ Vpot(x)

]
ψ̂(x) +

1

2

∫ ∫
dxdx′ψ̂†(x)ψ̂†(x′)Vat(x− x′)ψ̂(x)ψ̂(x′) , (6.1)

where ψ̂†(x) and ψ̂(x) are the bosonic field creation and annihilation opera-
tors. The cold atom-atom collisions are described by the interatomic potential
Vat(x) = gδ(x), where the coupling constant g is given by g = 4π~2as/m, with
as the s-wave scattering length.

To faithfully describe the correlations in a system of strongly interact-
ing bosons, it is necessary to forgo a mean-field description – as adopted in
Chapter 2 in introducing the Gross–Pitaevskii equation – and maintain field
quantization. For the case of an optical lattice potential, and allowing for a
slowly-varying external potential, Vpot(x) = Vlatt(x) + Vext(x), a more approx-
imate description of the Hamiltonian for strongly-coupled lattice bosons can
be found. We first expand the field operator ψ̂†(x) in the basis of localized
Wannier states as

ψ̂(x) =
∑
i,n

â
(n)
i wn(x− xi) , (6.2)

where â
(n)
i is the annihilation operator for a boson in the n-band Wannier

orbital located on site i.
Under typical experimental conditions, a great simplification of the Hamil-

tonian is achieved through the tight-binding approximation, by considering
only ground band Wannier orbitals (n = 0) and by neglecting off-site interac-
tions. Furthermore, direct tunneling beyond the nearest neighbor can usually
be neglected. These conditions require that the atomic samples be of suffi-
ciently low temperature not to populate higher bands, and that the lattices be
of sufficient depth such that the energy gap to the first-excited band is much
larger than either the tunneling or on-site energies.

With these conditions fulfilled, the Hamiltonian can then be recast as

ĤBH = −t
∑
i

(â†i âi+1 + â†i+1âi) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

n̂i(εi − µ) . (6.3)

Here, â†i and âi are the creation and annihilation operators for atoms at site
i, obeying the standard bosonic commutation relations [âi, â

†
j] = δij, and
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n̂i = â†i âi is the number operator. The chemical potential µ serves as a La-
grangian multiplier to fix the mean atom number of the system in the grand
canonical ensemble. The nearest-neighbor tunneling matrix element t, the
on-site interaction energy U , and the site-dependent energy offset εi, are re-
spectively defined in relation to the Wannier orbital wavefunctions and the
applied potentials as

t = ti = −
∫
dxw∗0(x− xi)

[
− ~2∇2

2m
+ Vlatt(x)

]
w0(x− xi+1) , (6.4)

U =
4πas~2

m

∫
dx|wo(x)|4 , and (6.5)

εi =

∫
dxw∗0(x− xi)

[
Vext(x)

]
w0(x− xi) ≈ Vext(xi) . (6.6)

For fixed chemical potential, a quantum phase transition between super-
fluid to Mott insulator is encountered as a function of t/U , due to a competi-
tion between kinetic and interaction energy. Here, superfluid refers to a state
of atoms with non-zero number variance, a continuous spectrum of excited
states, and supporting mass currents, i.e. density response to variations of
the chemical potential. Mott insulator refers to a state that has zero num-
ber variance, has a gapped excitation spectrum, which makes it insensitive to
small changes in the chemical potential, suppressing mass currents. In prac-
tice, AMO systems allow for a dynamical tuning of these parameters over a
wide range, and provide access to a large range of the phase diagram. The
on-site interaction U may be directly tuned via a Feshbach resonance [19],
where the magnitude of as can be controlled over orders of magnitude, and
the sign may even be inverted [177]. In our system, we control both the
tunneling t and the on-site energy U through change of the optical lattice
depths sER (recoil energy ER = ~2k2/2m, lattice wavevector k = 2π/λ). We
plot in Fig. 6.1 the dependence of t and U on the depth s, based on band-
structure calculations, for the case of an isotropic 3D lattice of wavelength
λ = 1064 nm and a s-wave scattering length of 100 a0. For comparison with
the numerically determined parameter values, we also provide analytical forms
for t and U applicable for deep lattices s � 1, based on analytical solutions
of the Mathieu equation and on the approximation of Gaussian wavefunctions
in harmonic potentials, respectively [107]. For deep lattices, the tunneling
parameter t is approximately given as t/ER = (4/

√
π)s3/4e−2

√
s, and the on-

site interaction between two atoms for the case of isotropic lattice depths is
given as U/ER = 4kass

3/4/
√

2π, or as U = 2~ω(as/σ)/
√

2π in terms of the
harmonic oscillation frequency ω = 2ER

√
s/~ and harmonic oscillator length
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Figure 6.1: Bose–Hubbard model parameters t and U as a function of the lat-
tice depth sER. (a) Magnitude of the tunneling matrix element t/ER obtained
from the width of the lowest lattice band t = ∆E/4. (b) On-site interaction
energy U/ER for a 3D geometry (red), with an assumed s-wave scattering
length as = 100 a0 and wavelength λ = 1064 nm. Also shown in blue is U/ER
for a 1D geometry, with lattice depths of s⊥ = 40 along the transverse axes.
(c) Ratio of t/U as a function of lattice depth sER, for the 3D and 1D geome-
tries, in red and blue. For all cases, the dashed lines represent approximate
analytical forms as discussed in the text.

σ =
√

~/mω. In the case of unequal lattice depths or spacings along different

axes, the on-site energy is given as U = 2~ω̄(as/σ̄)/
√

2π, where the bars refer
to geometric means of the different axes. The distribution of site-dependent
energy offsets εi is usually determined by the slowly-varying Gaussian enve-
lope of the optical dipole trapping beams. However, as will be discussed in
subsequent chapters, a more active control over the εi distribution – which
can be implemented, e.g., with additional optical potentials [46, 68, 69, 75] or
with atomic potentials in the two-component BHM [44, 46, 47, 66, 67, 71] –
can be used to study phases of the disordered BHM.

A qualitative understanding of the BHM phase diagram can be obtained
by examining the extreme limits of the competition between kinetic (t) and
interaction (U) energies, which promote delocalization and localization the
single-particle wavefunctions, respectively. In the limit of vanishing interac-
tions U/t → 0, the problem reduces to that of non-interacting bosons in a
lattice band-structure. The lowest energy eigenstate in the ground-band is at
q = 0, and all the particles will Bose condense into this lowest energy Bloch
state. We can express the state of N particles condensed into this Bloch state,
delocalized across a system of M sites with uniform phase, in the Wannier
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orbital basis as

|ψSF 〉 ∝
(
M−1/2

M∑
j=1

â†j

)N
|0〉 . (6.7)

This pure superfluid (SF) state is a coherent number state, and it can be
written as a product state of uncorrelated single-atom wavefunctions. We
note that, although we use the standard terminology of a “superfluid”, in
the complete absence of interactions the typical hallmarks of superfluidity –
the possibility of creating vortices, a linear phonon branch of the dispersion
relation at low quasimomentum, etc. – are not present in the system.

In the opposite limit of negligible tunneling and/or strong interactions
(t/U → 0), repulsive interactions between atoms cause the position of a given
atom to depend on the positions of the other atoms. The total energy of the
Hamiltonian is minimized by reducing the sum of non-linear interaction ener-
gies on each site, which is achieved by having uniform site occupancies across
the sample. This strongly-correlated state may be written in the occupation
basis of Wannier states as

|ψMI〉 ∝
M∏
j=1

(â†j)
N/M |0〉 , (6.8)

and is referred to as the Mott insulator (MI) state (assuming an integer value
of N/M relating to a commensurable density). The MI state has a mini-
mized variance in the number distribution (number-squeezed), and a max-
imized variance in the relative phase distribution, characterized by a loss of
phase coherence across the sample. For more general ratios of t/U , the ground-
state and excitations may be determined either by solving the system exactly,
or through approximate theoretical techniques, as described below. In these
intermediate regimes, even when the superfluid density is non-zero and the
state may be characterized as a superfluid, it can display strong many-body
correlations [178].

6.1.1 Mean-field treatment of the BHM

One approach used to approximately determine the state of a system for a
given set of parameter values is to make a mean-field approximation [29, 179–
181] that neglects the correlations between the individual particles. Simi-
larly to the approach used to describe mean-field interactions in the Gross–
Pitaevskii equation, we introduce a superfluid order parameter defined as
ψ =

√
〈n̂i〉 = 〈â†i〉 = 〈âi〉, which reflects the mean value of a spatially homoge-

neous condensate field (with ψ chosen to be a real number). The creation and
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Figure 6.2: Mean-field phase diagram of the Bose–Hubbard model (BHM).
(a) Areas of zero (blue) and non-zero (white) superfluid order parameter are
shown, delineating the superfluid and insulating regions of the BHM. The
phase diagram is plotted as a function of the chemical potential scaled by the
interaction energy, µ/U (where the mean occupancy is 〈n〉 = µ/U + 1/2), and
the scaled tunneling energy zt/U (with z the number of nearest neighbors).
The insulating regions are characterized by a fixed atom number per site.
(b) Superfluid order parameter |ψ| (normalized), across the phase-transition
boundary for variable zt/U and fixed average filling of unity (µ/U = 0.5).
(c) Over a larger range of zt/U values (in log-scale), a fuller growth of the
superfluid order parameter can be seen.

annihilation operators are then given by their mean values and a fluctuation
term about the mean, as âi = ψ+ ∆âi and â†i = ψ+ ∆â†i . We may then insert
the expression

â†i âj = (ψ+ ∆â†i )(ψ+ ∆âj) ≈ ψ2 +ψ(â†i −ψ) +ψ(âj−ψ) = −ψ2 +ψ(â†i + âj) ,
(6.9)

where we have neglected second-order fluctuations, into the Bose–Hubbard
Hamiltonian. The Hamiltonian then reduces to a set of decoupled single-site
Hamiltonians of the form [181]

Ĥ ′i = −zt
U

(â†i + âi)ψ −
µ

U
n̂i +

1

2
n̂i(n̂i − 1) +

zt

U
ψ2 , (6.10)

where we have rescaled all terms by the on-site energy U . Here, z = 2d is the
number of nearest neighbors for a lattice of dimensionality d.

To find the ground state for a given set of parameters z, t, U , and µ, we
variationally minimize the total energy as a function of ψ. Fig. 6.2 (a) plots
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the variationally determined phase-diagram depicting regions in which the
expectation value of Ĥi is minimized by either a zero or a non-zero superfluid
order parameter, relating to insulating and superfluid regions. The value of the
superfluid order parameter ψ becomes non-zero outside of the Mott insulator
lobes, as shown in Fig. 6.2 (b,c) for fixed chemical potential µ/U = 0.5, and
approaches its maximum value in the limit zt� U . In nearly all experimental
realizations, the system has a fixed total atom number but a spatially varying
chemical potential µ, as defined by the inhomogeneous trapping potential. For
a uniform value of zt/U about a sample in the atomic limit, this results in so-
called “wedding cake” or “ziggurat” density structures [29, 76–78, 182, 183]. in
which domains of different quantum phases - here SF and MI - coexist within
the same inhomogeneous sample, as determined by the local density.

6.1.2 Exact solutions of the BHM for small systems

For systems of relatively small size, one can also perform exact numerical
diagonalization of the BHM (Eq. 6.3) for fully soft-core bosons (i.e. no re-
strictions on site occupancy). For a fixed atom number N and fixed number
of lattice sites M , the number of possible states of the system (of the form
|n1, n2, · · · , nM−1, nM〉 with a total of

∑M
j=1 nj = N particles) is given by

Ns = (N +M − 1)!/N !(M − 1)!, growing exponentially with the system size.
Here, we examine the case of commensurate filling N/M = 1 for N = 6 parti-
cles, assuming a uniform site-dependent offset energy εi = 0 and working with
periodic boundary conditions i ≡M + i.

To start, we shall consider only the ground state of the system |φg〉, which
should change character as a function of t/U . To study the transition between
the superfluid and the Mott insulator regimes, we examine the overlap of
the exact ground state with the superfluid and Mott insulator ground states,
|ψSF 〉 and |ψMI〉, which are exact only in the respective limits t/U = ∞
and t/U = 0. The overlap between two pure quantum states |φA〉 and |φB〉
can be characterized by the fidelity F = |〈φA|φB〉|. In Fig. 6.3 (a), we plot
the square of the fidelity of the ground state with the SF and MI ground
states, i.e. F 2

SF = |〈φg|ψSF 〉|2 and F 2
MI = |〈φg|ψMI〉|2, as a function of t/U .

Another way to characterize the overlap between two pure quantum states
|φA〉 and |φB〉 is through the statistical distance [184] between them, given as
D2 = 4(1 − |〈φA|φB〉|2). In Fig. 6.3 (b), we plot the distance D between the
exact ground state and the SF and MI ground states, as a function of t/U .

While studying the fidelity and statistical distance of the ground state
with respect to some prototypical many-body states can be instructive, it is a
bit detached from experiment, where one does not typically have information
about the full quantum state of the system (as through quantum state tomog-
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Figure 6.3: Tuning the ground state from a Mott insulator to a superfluid.
(a) As a function of the ratio of tunneling to interaction energies t/U , we
plot the square of the fidelity F of the ground state with respect to a perfect
Mott insulator (MI, red) and perfect coherent state or superfluid (SF, blue),
characterizing the degree of overlap with these two delineating distributions.
(b) Over a larger range of t/U and in log-scale, we plot the statistical distance
of the ground state from the MI and SF quantum states, with the same color
code as in (d).

raphy). Thus, we now focus more on some properties of the system that have
a connection to experimental measures, and which can provide signatures of
a transition between different quantum phases. One common experimental
technique is to study the excitation spectrum of a system [27, 185]. Here,
one perturbs the system in some way at a controlled frequency or energy, and
examines an observable of the system – relating to susceptibility, for exam-
ple – as a function of the perturbation frequency or energy. This can yield
information about the excited state spectrum of the system [186, 187].

Going back to the extreme limits of t � U and t � U , excitations of
the system can be easily visualized. In the atomic limit (t/U = 0), the exci-
tations are those of particle-hole pairs, in which there is a holon (or 1 atom
less than for uniform density) on one site and a charge-on (or 1 atom more
than for uniform density) on another. For commensurate filling, this leads
to doublon-holon pairs, with 2 particles on a given site and 0 particles on
another, and other variations of vacancies and multiple occupancies. In the
delocalized SF limit (t/U = ∞), the energy spectrum should be exactly as
in the case for non-interacting atoms as studied in Chapter 2. As the BHM
restricts particles to the lowest band, one would thus expect a band of ener-
gies with width 4t, with quasimomenta ranging from −π/d to π/d in steps of
π/2Nd, continuous in the limit of large M . In Fig. 6.4, we plot the numeri-
cally determined eigenergy spectra as a function of t/U . In Fig. 6.4 (a), we see
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Figure 6.4: Ground and excited state energies of the Bose–Hubbard Hamilto-
nian. (a) We plot the eigen-energy distribution (scaled by U) of a six-site com-
mensurate BHM, as a function of t/U . In the atomic limit (t� U), the energy
spectrum is gapped with a typical energy spacing ∼ U , and with particle-hole
excitations (doublon-holon, 2 doublon-holons, triplon-biholon, etc.). In the
limit of delocalized particles (t � U), a nearly continuous distribution of ex-
cited state energies can be seen. (b) As in (a), but plotted over a small range to
highlight the lowest excitations. (c) Zooming in on some avoided many-body
crossings as t/U is increased. (d) Distribution of eigen-energies scaled by the
tunneling t and particle number N , relating to a single-particle band-width of
4t in the limit of weak interactions (t� U).

that for vanishing t/U the spectra are gapped, relating to discrete particle-hole
excitations (doublon-holon, triplon-biholon, etc). The low-energy features for
small t/U are highlighted in Fig. 6.4 (b). As the tunneling energy is increased,
the eigenenergies spread out and form essentially continuous spectra. Avoided
many-body energy crossings can be observed in the transition between the two
regimes, as highlighted in Fig. 6.4 (c). Finally, in the limit t � U , we see in
Fig. 6.4 (d) that the single-particle energy spectra indeed have the expected
width 4t (eigenergies scaled by the total particle number N).

We now discuss some other experimentally relevant measures, which are
better aimed at detecting (non-local) correlations in the system. The contrast
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of time-of-flight interference patterns [27, 188, 189] is a standard observable
used to distinguish a coherent superfluid state from a number-squeezed, phase-
incoherent Mott insulator state. This is in analogy to observing the far-field
interference pattern from a laser-illuminated grating, such that when the phase
across the slit-pattern is uniform, sharp interference peaks are seen, and the
pattern is washed out if the phase is randomized. Ignoring effects of interac-
tions, the far-field time-of-flight single-particle interference pattern reveals the
in-trap momentum distribution of the atoms [188],

S(k) ∝
M∑

j,j′=1

ei(j−j
′)kd〈φg|â†j âj′ |φg〉 . (6.11)

Here, we have neglected an additional term, the Fraunhofer or Wannier en-
velope function W (k), given by the Fourier transform of the on-site wave-
functions. For completely delocalized wavefunctions, the distribution of k-
vectors is in complete analogy to the laser-illuminated slit, with S(k) ∝
N−2 sin2

(
Nkd/2

)
/ sin2

(
kd/2

)
. The on-site repulsion serves to reduce the

spatial coherence length of the single-particle wavefunctions, and leads to
a decreasing contrast of the interference pattern. For a 1D distribution of
atoms, with only N = M = 4 atoms and sites, we plot in Fig. 6.5 the vis-
ibility contrast of the momentum distribution, defined as C = S−/S+ with
S± = S(2π/d) ± S(π/d). The visibility contrast serves to characterize the
first-order, single-particle coherence of the sample. Higher-order correlations
can be measured through higher moments of the matter-wave field, such as
through noise-correlation measurements [190, 191] or through elastic diffrac-
tion experiments [49, 192].

Under certain conditions, such as at finite temperature or in reduced di-
mensions, the contrast of the interference pattern is not a particularly good
observable to characterize correlations in a system [188, 193, 194], while the
momentum peak-width serves as a better indicator [188]. The width of the
interference peak is inversely proportional to the in-trap correlation length
of the single-particle wavefunctions, i.e. the typical length scale over which
the off-diagonal coherences of the single-particle density matrix decay. As a
function of site distance r, the off-diagonal coherence from a site j is given
by [188]

Dj(r) ∝ 〈φg|â†j âj+r|φg〉/
√
n̂jn̂j+r , (6.12)

which in the homogeneous system is independent of j. In the superfluid regime,
these coherences decay algebraically as D(r) ∝ A|r|−K/2, while in the Mott
insulator regime the decay is exponential as D(r) ∝ Be−|r|/ξ, with ξ the cor-
relation length. Across the superfluid-to-insulator transition, the peak-width
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Figure 6.5: Momentum-distribution contrast of lattice gases. (a) As shown in
the inset, the momentum wavevector distribution S(k) of a lattice-modulated
gas displays interference peaks at multiples of k = 2π/d, akin to the far-
field interference pattern from an illuminated grating. For perfectly coherent
samples [as shown for t/U = 10 (red)], the momentum distribution has a large
contrast, defined as C = S−/S+ with S± = S(2π/d) ± S(π/d). For more
strongly interacting gases (t/U = 0.1 in blue and t/U = 0 as dashed grey) the
contrast of the pattern decreases. In the greater graph, we plot the contrast
C as a function of t/U . (b) The contrast C plotted as a function of t/U , over
a larger range and in log-scale.
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(dashed red). (b) Log-Log dependence of D(r) on t/U .

increases abruptly from w ∝ L−1, where L is the system size for an inhomo-
geneous system, to w ∝ ξ−1 [188]. In Fig. 6.6, with plot the off-site correlator
D(r) for nearest-neighboring and next-nearest neighboring sites (for a small
system of N = M = 4).

Finally, we recall the limits of validity for the BHM model, which consid-
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ers only a single-band of the lattice, local on-site interactions, and nearest-
neighbor tunneling. Of particular relevance to the remaining chapters are the
limitations of this model at weak lattice depths in systems of strongly inter-
acting one-dimensional (1D) Bose gases. In the following, we discuss some
theoretical descriptions of interacting bosons in one dimension.

6.2 Theoretical descriptions of 1D Bose gases

6.2.1 General considerations

A system of bosonic atoms with motion restricted to one dimension (1D) can
be realized by tight radial confinement in an array of “tubes” that are formed
using deep lattices along the two transverse directions x and y. We may
describe this system with an effective 1D Hamiltonian. To describe such a
system, one can start from the description introduced in Chapter 2 based on
the non-linear Schrödinger equation (Gross–Pitaevskii equation) describing
bosonic fields with interactions, which are characterized by a 3D coupling
constant g = g3D = 4π~2as/m (as the s-wave scattering length). We can
then introduce an effective 1D coupling constant g1D to describe boson-boson
interactions in the 1D version of this equation. For this purpose, we assume
that the wavefunctions of all the atoms are energetically restricted to the
lowest radial mode φ0. We can then factorize the wavefunctions in terms of
radial and longitudinal coordinates (neglecting any azimuthal variation), as
Ψ(r) = φ0(ρ)ψ(z), where φ0(ρ) = 1/

√
2πσ⊥e

−ρ2/2σ2
⊥ , with ρ =

√
x2 + y2 and

σ⊥ =
√

~/mω⊥, where ω⊥ is the radial harmonic frequency [195, 196]. The
transverse degrees of freedom may then be integrated out, so that one arrives
at an effective 1D description of the system, where the typical 3D atom-atom
interaction potential Vat(r−r′) ≈ g3D ·δ(r−r′) is replaced by the 1D interaction
potential Vat,1D(z−z′) ≈ g1Dδ(z−z′). The 1D coupling strength g1D may then
be described in terms of that for 3D by the relation [195]

g1D = g3D|φ0(0)|2
(

1− C as√
2σ⊥

)
≈ g3D|φ0(0)|2 =

g3D

2πσ2
⊥
, (6.13)

where C is a constant with value ∼ 1.46, and where we neglect the second
term in the parentheses as Cas �

√
2σ⊥ for typical experimental conditions.

The 1D coupling strength may also be reexpressed in terms of the transverse
harmonic oscillator frequency as g1D ≈ 2as~ω⊥.

For non-interacting and weakly-interacting trapped gases of bosons in 1D,
much is the same as in 3 dimensions. Absent interactions (and at T = 0) all
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Figure 6.7: Characterizing the inhomogeneous two-dimensional array of the
1D systems. (a) Distribution of central densities of individual 1D systems (or
tubes), n1D(z = 0), as a function of site indices i and j. (b) Binned percentages
of tubes that are characterized by a given Lieb–Liniger parameter of value γ.
The characteristic value, taken as a weighted (by tube population) average
over the entire distribution, is γeff ≈ 0.6.

the atoms will occupy the single-particle ground state. For weak interactions, a
mean-field description can be retained, with an approximately Thomas–Fermi
profile [197] as in 3D, albeit with increased density due to the transverse con-
finement [198]. For very strong repulsive interactions, however, even in the
absence of a lattice potential, correlations between 1D bosons can have a large
influence on a system’s spectral properties and spatial distribution. To min-
imize interaction energy, repulsive bosons seek to minimize the spatial over-
lap of their wavefunctions. In the limit of infinite interactions, an effective
fermionization of bosons takes place in 1D [199], where interacting bosons can
be described as non-interacting fermions, with Pauli-blocking mimicked by
the infinite repulsion (similar as to the case of non-identical fermions [200]).
In this limit, the atoms form a Tonks–Girardeau gas [197, 201] where the
single-particle coherence length decays on the length scale of the typical in-
terparticle spacing, and higher-order correlations vanish at short length scales
(anti-bunching). An effective Fermi wavevector can also be defined as for non-
interacting fermions, with kF = πn1D, where n1D is the 1D density (locally
defined in a trapped system).

For the most general case, the state of a system of interacting 1D bosons can
be described by the Lieb–Liniger parameter, which compares their interaction
and kinetic energies, as γ ∼ Eint/Ekin [202]. For a lattice-free gas of bosons
described by an effective 1D coupling strength g1D and a 1D density n1D, this
is given as γ = g1Dn1D

~2n2
1D/m

. In terms of the Lieb–Liniger parameter, a general
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rule of thumb is that a mean-field description is applicable for γ � 1, while
for γ � 1 the Tonks–Girardeau regime is reached [197]. In the intermediate
regime γ ∼ 1, which characterizes most of our 1D gases in the absence of
a z-lattice, correlations are important but coherent and superfluid behavior
can still be observed. In our experiments, we typically populate ∼ 1000 one-
dimensional tubes of bosons from an initially three-dimensional BEC, with
around 100 atoms per tube on average. Due to the external confinement, the
1D density n1D varies amongst the 1D tubes and also within each 1D tube, such
that it is a function of z as n1D(z). To characterize our collection of 1D gases,
we use 2/3 of the central density n1D(z = 0) as representative value for n1D

in each tube (this value (2/3)n1D(z = 0) is equal to N/2RTF in the Thomas–
Fermi approximation). We then characterize the entire system by a mean-γ
parameter, that is weighted by the population in each tube. Fig. 6.7 (a) plots a
typical distribution of central densities in our array of 1D tubes. The resulting
distribution of γ values is plotted in Fig. 6.7 (b), for a typical sample that is
characterized by a mean value γeff = 0.6.

6.2.2 Theoretical description of interacting 1D bosonic
fields

So far we have attempted to give some qualitative insight as to how 1D bosons
behave for weak and strong interactions, and how a system of these particles
can be parameterized in experiment. We now discuss some commonly used
theoretical descriptions of 1D Bose gases at low temperatures, with short-
range δ-like interaction potentials, in weak or completely absent longitudinal
lattice potentials, following the descriptions in Refs. [203, 204]. While for
deep lattices a Bose–Hubbard model description can be used, as described in
earlier sections, localized on-site wavefunctions are not a priori an appropriate
description in the absence of deeply modulated lattice potentials. For a low-
energy description of 1D quantum fluids, we again begin with a quantized
Hamiltonian as in Eq. 6.1,

Ĥ =

∫
dzψ̂†(z)

[
−~2∇2

2m
−µ
]
ψ̂(z)+

1

2

∫
dzdz′ψ̂†(z)ψ̂†(z′)g1Dδ(z−z′)ψ̂(z)ψ̂(z′) ,

(6.14)
here neglecting any additional external potentials, either slowly-varying as in
Vext(z) or with short modulation length as for an added lattice. The density ρ
(equal to n1D) is controlled through the Lagrangian multiplier µ. In the case
of trapped gases the local density ρ will vary within the 1D system due to the
external trapping potential.

We now follow the bosonization approach for a collective field description
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of Tomonaga–Luttinger liquids, taking the bosonic field operator as [203–205]

ψ̂†(z) = [ρ̂(z)]1/2e−θ̂(z) , (6.15)

where conjugate density and phase operators, ρ̂ and θ̂, obey the commutation
relation [ρ̂(z), θ̂(z′)] = iδ(z − z′). Again, we assume a homogeneous system
with average density 〈ρ̂(z)〉 = ρ̄ = µ/g1D, which is also given by N/L for
N particles in a uniform system of length L. The density operator can then
be described to lowest order as ρ̂(z) ' ρ̄ − ∂zφ̂(z)/π, where φ̂(z) is a slowly
varying quantum field.

The Hamiltonian containing only kinetic and interaction contributions,
Eq. 6.14, may then be expressed in the form of the Tomonaga–Luttinger (TL)
Hamiltonian [206, 207]

ĤTL =
~υ
2π

∫
dz

[
K(∂z θ̂(z))2 +K−1(∂zφ̂(z))2

]
. (6.16)

Here, the system has a linear dispersion relation ω = υ|k| at low energies,
where υ is the speed of sound in the gas. The Luttinger parameter K serves
to describe the correlation properties of the system, and is related to the
earlier-used Lieb–Liniger parameter γ. In the limit of vanishing interactions
(γ = 0) the Luttinger parameter takes a value K = +∞, while in the limit of
infinite zero-range interactions (γ = +∞) it takes a value K = 1. Approximate
forms can be found near these limits, with K(γ) = π/

√
γ − 1/2 for γ � 1

and K(γ) = 1 + 4/γ2 + O(γ−3) for γ � 1, and a sound velocity given by
υ(γ) = ~πρ̄/mK(γ) [204].

Finally, the effect of weak periodic perturbations, as due to a longitudinal
lattice, may be taken into account. We assume a lattice potential Vlatt(z) =
V0 cos2(kz), with small depth V0 � µ such that it only weakly modulates the
density distribution. The total Hamiltonian may then be written as Ĥeff =

ĤTL + ĤV , where the contribution due to the lattice potential is [204]

ĤV =
g̃u
π

∫
dz cos

[
2pφ̂(z) + zδ

]
. (6.17)

Here, p is a parameterizing integer describing the density of atoms with respect
to the lattice, where for p = 1 there is one particle per site, and for p = 2 there
is one particle for every 2 sites, and so on. The second term relates to the in-
commensurability of the lattice potential with respect to the bosonic density,
with δ = nk−2pπρ0, where n is an integer chosen such that δ takes its smallest
value. The coupling strength is then given by g̃u ≈ πρ̄V0(V0/µ)n−1 [204]. The
added lattice potential can lead to a number of interesting ordered quantum
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Figure 6.8: Analytical estimates of the transition point to insulating behavior
in 1D Bose gases. As a function of the Lieb–Liniger parameter γ, the critical
lattice depth that induces insulating behavior in 1D Bose gases, based on the
sine-Gordon model and Bose–Hubbard models, are plotted in blue and red,
respectively. At a typical value for our 1D gases of γ ∼ 0.6, we expect to
observe insulating behavior beyond critical depths of 4.7 and 6.2, based on the
sine-Gordon and Bose–Hubbard models, respectively.

phases for a scalar bosonic field, including Mott-insulating phases for commen-
surate potentials and charge-density wave states for incommensurate ones.

For a fully commensurate lattice potential (δ = 0), the addition of the lat-
tice term ĤV leads to the so-called sine-Gordon model. This model describes
a superfluid to Mott insulator transition, with n/p bosons per site on aver-
age, as a function of the Luttinger parameter K. The value of the Luttinger
parameter at the transition point for fixed filling is given by K∗ = 2/p2, and
thus K = 2 for unit filling.

Based on the sine-Gordon model, analytical estimates for the superfluid to
Mott-insulating transition point as a function of lattice depth s = V0/ER have
been determined for relatively strong interactions and weak potentials [31].
For values γ . 10, the Luttinger parameter may be approximated as K(γ) ≈
π/
√
γ − γ3/2/(2π) [31], and the critical value for insulating behavior as Kc =

2 + |s|K/2 [107], reexpressed as a critical lattice depth in terms of γ as

scrit = 2
[ π√

γ − γ3/2/2π
− 2
]
. (6.18)

This can be compared to analytical estimates based on the Bose–Hubbard
model, which apply in the limit of deep lattices and for weaker interactions.
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In Ref. [107], a transcendental equation defining the s− γ phase boundary to
the insulating state was derived as

s =
1

4
ln2

[
2
√

2π

γ
(U/t)crit

√
s

]
, (6.19)

with a critical ratio of the interaction to hopping parameter (U/t)crit ≈ 3.85.
The critical depths for insulating behavior, based on these two analytical forms,
are plotted in Fig. 6.8 as a function of the Lieb–Liniger parameter γ.
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Chapter 7

Strongly interacting
Bose gases II:
experimental probes

In this chapter, we review some common experimental techniques used to
characterize strongly interacting quantum gases.

7.1 Visibility

For weakly interacting, degenerate lattice gases, in which all the atoms may
approximately be described as having the same wavefunction, the time-of-
flight (TOF) far-field momentum distribution contains the full information
about the spatial wavefunction of the atoms [18]. As a sum of many identical
single-particle interference patterns after release from the lattice, a Fourier-
transformed image of the BEC’s spatial distribution builds up atom by atom.
For strongly-interacting quantum gases, in which the atoms are no longer all
Bose–condensed into the same quantum state, but rather have wavefunctions
that are spatially anti-correlated, the loss of single-particle phase coherence
across the lattice sites leads to a washed-out TOF interference pattern. Here,
we shall first show how TOF spectra can provide evidence for a loss of global
phase coherence in the superfluid-to-Mott insulator transition [27]. After this,
we discuss limitations to using this technique as the sole diagnostic tool, and
failures as a useful observable in reduced dimensions.

We typically operate with a system of ∼ 7 × 104 atoms of 87Rb in the
|1,−1〉 hyperfine state that are slowly loaded into a 3D optical lattice. The
lattice is symmetric with respect to both the lattice wavelength (λ{x,y,z} ≡
λ = 1064 nm) and the lattice depth (sER, with ER = h2/2mλ2). Shortly after
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ramping up the lattice to its final depth s, we suddenly turn off all confining
potentials and release the atoms in time-of-flight. After 18 ms, we absorptively
image the atomic distribution along the x axis. We then measure the visibility
contrast C of the time-of-flight momentum distribution P (k) [27, 189], as
defined in Fig. 7.1. Unlike in the simple 1D example of the previous Chapter,
here we measure the number of atoms in different regions about a ring of
constant k2

y+k
2
z values (integrated over all kx values by imaging along this axis).

Specifically, we measure at and directly in between the first (and minus first)
reciprocal lattice vectors along these two axes [189]. For a completely coherent
cloud of atoms, we expect a visibility contrast of C = 1, while for a completely
incoherent sample – e.g. due to either thermal or quantum depletion – we
expect to measure C = 0. Fig. 7.1 (a) plots the contrast C as a function of
the final lattice depth s, and reveals a steep decline of C beyond values of
s ∼ 14. In Fig. 7.1 (b) we plot the numerical derivative of the visibility, i.e.
the difference between successive s-values, which has a sharp feature centered
around s ∼ 15 (with negative values first appearing around s ∼ 14). We note
that upon ramping back down to low s-values from a deep lattice, a high-
visibility interference pattern is recovered, with little indication of heating.
This reversible loss of phase coherence with increasing lattice depth s (and
increasing U/t), is an indicator of the well-studied superfluid-to-Mott insulator
transition in 3D.

In the 3D case, visibility contrast appears to be a reasonably accurate ob-
servable for detecting the SF-MI transition; the observed transition at a value
of U/t ∼ 36 for s = 14 is realistic for our distribution of local densities. How-
ever, in the more general situation, visibility contrast is not the best indicator
for the loss of superfluidity. It has been shown that at zero temperature,
measurement of the visibility contrast is not the most direct method for ob-
serving the superfluid-to-insulator transition in a system of Hubbard-regime
bosons [188] (alternative measures discussed later). Moreover, visibility con-
trast can even be a false indicator if used as a proxy for superfluidity. It has
been shown that thermal gases of atoms in the normal phase [193, 194] can
exhibit sharp peaks in their time-of-flight momentum distribution.

In experiments with quantum-degenerate gases, the unsuitability of visi-
bility contrast as an indicator of the SF-MI transition is most severe in low-
dimensions. To emphasize this point, we show data for the visibility contrast
as a function of lattice depth for an array of 1D Bose gases. Instead of using a
symmetric 3D lattice as above, to create the 1D gases we first load the atoms
into very deep transverse lattices along the axes x and y, with wavelength
λ = 1064 nm and depth s⊥ = 40 ER. This results in a collection of iso-
lated 1D gases, which can be characterized by a mean Lieb–Liniger parameter
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Figure 7.1: Loss of matter-wave coherence across the superfluid-to-insulator
transition in 3D. (a) Visibility contrast C as a function of the lattice depth
V = sER, symmetric along all axes. The inset illustrates the determination
of C (shown for s = 9). (b) The numerical derivative (difference between
successive points) of the contrast shows a distinct minimum near the expected
position of the SF-MI transition in 3D.

γeff = 0.6. We then slowly ramp up a lattice of wavelength λ = 1064 nm and
variable depth szER along z. Due to the stronger interactions in 1D (from
the enhanced density) and the smaller coordination number z = 2, we expect
that the transition to a Mott-insulating state should occur at a smaller value
of the lattice depth as compared to in 3D. For the characteristic density of
the 1D systems, estimates based on the sine-Gordon [SG; Eq. 6.18] and Bose–
Hubbard [BH; Eq. 6.19] models predict that the transition should occur at
critical lattice depths of sc = 4.7 and 6.2, respectively.

After releasing an array of interacting 1D Bose gases, no distinguishing
momentum features are found along the axes of tight confinement (here x and
y), due to the lack of phase coherence between the independent 1D systems.
Thus, we use a slightly modified visibility contrast measure for the case of
1D gases. First, to ensure that the atoms always have the same projection
onto Bloch states prior to release, we quickly (in 50 µs) load the lattice to
the same depth sz = 20 [185]. Then we perform a π phase-shift between
adjacent lattice sites (half a Bloch oscillation, by turning off the ODT for
∼ 450 µs while leaving the z-lattice on), which shifts the velocity envelope
of the diffraction pattern by 1 vR, resulting in symmetric peaks along z [27].
Finally, we measure the visibility contrast of the time-of-flight interferences as
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Figure 7.2: Time-of-flight visibility contrast C1D as a function of lattice depth
for an array of 1D Bose gases (γ ≈ 0.6) as a function of the longitudinal lattice
depth sz. Inset: Time-of-flight velocity distribution (along z).

C1D = η−/η+ [44], with η± = nv=+1 + nv=−1 ± 2nv=0; nv=0,±1 apertures shown
in the inset of Fig. 7.2. We note that unlike the symmetric measure in Fig. 7.1,
here the overall shape of the Wannier envelope (having greatest intensity at
nv=0) results in a visibility contrast not bounded by 1 and 0, but rather 1 and
some slightly negative value (typically ∼ −.2) that depends on the width of
the envelope.

We now measure this 1D visibility contrast as a function of sz. In contrast
to the 3D case, we observe a continuous, slow decrease of C1D, with no abrupt
changes that might signal a transition between a coherent and phase-incoherent
state. In the proximity of lattice depths for which we expect the transition to
an insulating state (sc ∼ 4.7− 6.2, shown in green), no significant changes in
the visibility measure can be discerned. The lack of any sharp change in the
visibility measure for 1D gases across the expected SF-IN transition is con-
sistent with theoretical predictions [208] and previous observations [68, 185]
(based on the measured coherent fraction or peak fraction in time-of-flight),
which indicated that the measurement of sharp visibility fringes is not an ap-
propriate stand-in for the detection of superfluidity in a generic system. This
limitation notwithstanding, visibility contrast may still be used as a comple-
mentary observable to characterize the state of a system. As is seen in Fig. 7.2,
the contrast still changes monotonically with the lattice depth sz (and thus
U/t), and the same may be said for the temperature dependence [209].
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As a brief aside, we illustrate how visibility measurements in a system of
1D Bose gases can be used to estimate important parameters of the Bose–
Hubbard Hamiltonian, based on collapse-and-revivals of the interference of a
matter-wave field [178, 210, 211]. Starting from a lattice depth of sz,i = 6 ER
along z, near the SF-MI transition (with s⊥ = 40 ER), we quickly (in 50 µs)
linearly ramp the lattice depth to a value deep within the 1D Mott-insulating
regime, sz,f = 18. The lattice ramp speed is adiabatic with respect to the
excitation of higher lattice bands, but fast enough to essentially freeze out
tunneling in the system on relevant timescales. We then vary the amount of
hold time τ in this deep lattice prior to release in time-of-flight, and monitor
the visibility contrast of the released 1D Bose gas array as a function of τ .

To paint a simplified picture of how we expect the visibility contrast to
evolve in time, we imagine the fate of a single particle interacting with a sea of
other bosons (in reality all are indistinguishable, so it makes no sense to pick
one out from the others). Since the freeze-out of the tunneling happened while
the atoms were still in the 1D superfluid regime, it is fair to assume that the
particle’s spatial wavefunction is delocalized over several lattice sites. With
tunneling frozen out, the particle’s site-dependent temporal phase evolution
will depend on the local site-dependent energy εi, as well as the on-site inter-
action energy Uni(ni − 1)/2. If only interaction terms contributed, we would
expect phase evolution at multiples of U/h (1, 3, 6, etc. for double, triple, and
quadruple occupancies). Somewhat similar to Bloch oscillations in a linear
gradient, we thus expect that the particle’s wavefunction on different sites will
rephase with a characteristic times h/U (∼ 0.87 ms for the sz,f = 18). Taking
the inhomogeneous trapping potential into account, however, we also expect
that the different sites will phase evolve at an additional rate reflecting the
local potential εi, of which there is a broad distribution, leading to an overall
dephasing across the sample.

In Fig. 7.3, we plot the measured visibility contrast C1D as a function
of τ . We indeed see revivals of the interference pattern’s contrast at times
relating to the expected on-site interaction energy U/ER = 0.56, however due
to the external trapping potential these oscillations die out rather quickly. In
more homogeneous external potentials, which allow for the observation of more
than a few cycles, such collapse-and-revival measurements have been used as
a spectroscopic tool for measuring site occupation statistics [210], observing
number-squeezed superfluids upon approaching the MI regime [178, 210], and
observing deviations from the single-band Hubbard Hamiltonian due to atom-
atom interactions [210].

We shall now discuss some additional observables that may be used to
characterize an ultracold lattice-gas system, in particular for the signaling of
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Figure 7.3: Collapse-and-revival in the matter-wave coherence of 1D Bose
gases. For a cloud of 1D Bose gases (s⊥ = 40), the lattice confinement along
z is quickly ramped up in 50 µs from an initial depth of sz,i = 6 to sz,f = 18.
Oscillations in the contrast of time-of-flight interference patterns (quantified
by the 1D visibility measure C1D) at a frequency of 1.13(1) kHz are in good
agreement with the expected on-site interaction energy U/h = 1.15 kHz.

a transition between superfluid and Mott-insulating states.

7.2 Momentum peak width

We recall the earlier discussion regarding what information about a system can
be deduced from typical TOF momentum-space images. The number of mo-
mentum peaks, as well as their relative weights, is simply given by the Fraun-
hofer envelope function (or Wannier envelope, analogous to the Debye–Waller
function for material crystals) that reflects the size of the atomic wavefunctions
on individual lattice sites. The width of these peaks, on the other hand, reflects
the number of sites that coherently contribute to the interference pattern. For
a fully degenerate sample of bosons in a lattice, the width σ of the peaks just
scales inversely with the system size L, as σ ∝ L−1. As soon as repulsive
interactions cause the onset of quantum depletion, i.e. when atoms cease to
exclusively occupy the single-particle ground state, the single-particle coher-
ence length (decay length of Green’s function, single-particle density matrix,
etc.) becomes smaller than the system size (the same holds for thermal deple-
tion [212]). Deep in the Mott-insulating regime, single-particle coherence does
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Figure 7.4: Momentum peak width in time-of-flight across the superfluid-to-
insulator transition in 1D. As illustrated in the inset, the momentum-peak
width σ (1/

√
e half-width) is determined by a symmetric multi-Gaussian fit

to time-of-flight interference patterns. The dependence of σ on sz is plotted,
along with the fit of a linear increase beyond a critical depth sc.

not extend off-site. The width of the TOF momentum peaks increases when
the coherence length in the system becomes smaller. Moreover, it has been
demonstrated that the momentum peak-width is a good indicator of the SF-MI
phase transition, showing a sudden change about the critical point [185, 188].

Here, using the same set of time-of-flight images that produced the 1D
visibility measurements shown in Fig. 7.2, we instead determine the width of
the momentum peaks. We do this by performing a symmetric multi-Gaussian
fit to the integrated density profiles as shown in the inset of Fig. 7.4, consisting
of symmetric diffraction peaks (in blue) on top of a broad background (dashed
red). From such fits, we determine the peak-width σv (1/

√
e half-width) as

a function of the lattice depth sz along z, as plotted in Fig. 7.4. To the
dependence of peak-width on lattice depth, we fit a function that is constant
below a critical value sc, and then increases linearly beyond this point (fitting
to the range of data with sz ≤ 13). The fit (plotted along with the 1 standard
deviation confidence regions in Fig. 7.4) returns a value of sc = 5.7±0.5, which
is in good agreement with the expected region for the transition to insulating
behavior, as shown in green and discussed in the previous section.

86



7.3 Impulse-response

Another way to observe the superfluid-to-insulator transition in lattice-confined
atomic gases is through transport measurements [213], such as by monitoring
the response of the atoms to an applied force. For repulsive 1D Bose gases in
particular, it has been observed that collective motion in response to applied
potential gradients is inhibited in weak optical lattice potentials [185, 214].
In the strongly-correlated regime, the redistribution of density between lattice
sites costs a discrete energy ∼ U , and for weak gradients (weak with respect
to U) that do not bring adjacent sites into resonance, response to impulse
is suppressed [27, 186]. In recent years, the response to weak impulses has
been used as an experimental diagnostic to signal the superfluid-to-insulator
transition in 1D [31, 215] and in 3D [75, 215].

To make things explicit, the measurement of impulse-response in its ideal-
ized form does not probe physical transport in the lattice (i.e. mass currents or
density redistribution); rather it probes the coherence of the atomic wavefunc-
tions. To explain how this works, we consider the extreme case of a superfluid
BEC, with quasimomentum q = 0, in a deep lattice with essentially zero
tunneling (as can be encountered in non-interacting gases), such that physi-
cal transport is a priori disallowed. Just as we wrote the localized Wannier
states as superpositions of delocalized Bloch functions in Chapter 2, we can
also represent the Bloch states as superpositions of localized Wannier orbitals.
The delocalized Bloch wave function φ

(n)
q (z), of the nth lattice band and with

quasimomentum q, can be written as

φ(n)
q (z) = N−1/2

∑
j

eiqzj/~wn(z − zj) , (7.1)

where we recall that wn(z−zj) is the Wannier orbital of the nth band, localized
at position zj, and that N is a normalization constant. Our q = 0 Bloch state
thus represents an equal-phase superposition of all localized Wannier states.
If we apply a weak potential gradient U(z) = Fz onto the sample for some
time Timp, a site-dependent phase is accrued of the form ϕj = FzjTimp/~,
which means that the Bloch state will be transformed from q = 0 to q =
FTimp. This evolution in quasimomentum space (and in momentum space after
band-mapping) comes about solely due to interference between contributions
of the wavefunction on different sites (with Bloch oscillations occurring at
long times, or Josephson oscillations in the two-site case). In contrast to this
linear evolution of quasimomentum for the delocalized Bloch state, a single
particle localized to one site of the lattice will be unresponsive to applied
gradients. We thus expect that if we transform the ground state of the system,
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Figure 7.5: Impulse response of 1D bosons as a function of lattice depth.
(a) The response to impulse is determined by a straight-line fit (with slope α,
normalized to the case of free atoms) to the dependence of velocity on applied
impulse I (recoil velocity vR = h/mλ). (b) The dependence of α on the lattice
depth sz. The lines and surrounding shaded regions are fits to the data with
confidence regions (1 s.d.) of a linearly decaying response, with no response
(α = 0) beyond a critical lattice depth sc.

by control over t and U , from a superfluid (with delocalized, algebraically
decaying single particle wavefunctions) to a Mott insulator (with exponentially
localized single particle wavefunctions), that the response to applied impulse
will go to zero across the quantum phase transition, serving as a good indicator
for the superfluid-to-insulator transition [31, 75].

Here, we study impulse-response in a system of 1D Bose gases as in the
above examples, again characterized by a tube-averaged value of γeff = 0.6
(s⊥ = 40 as above). We apply weak magnetic-field gradients along z, briefly
pulsed on for a duration T = 1.2 ms, which applies forces of variable strength F
ranging from 0 to Fmax/m = 1.2 m/s2 (the atoms are in the |F,mF 〉 = |2,−2〉
state). A corresponding impulse I = F × T is applied to the atoms. The

88



magnitude of the strongest impulses are such that the final quasimomentum
reached by nearly-free atoms is far from the band-edge, avoiding excitations
that can occur for velocities in excess of some critical value vcrit (with low
values of vcrit in 1D [213, 215]). After impulse, we monitor the response of
the atomic cloud in time-of-flight, by measuring the center-of-mass velocity of
the distribution along z, after a brief (∼1 ms) ramp-off of the z-lattice (band-
mapping). As illustrated in Fig. 7.5 (a), we characterize the response as a
function of the impulse strength I (with slope α). As plotted in Fig. 7.5 (b),
we observe a nearly linear decrease of the atomic response to impulse as a
function of the optical lattice depth sz. We determine the critical point at
which the atoms become unresponsive to impulse by fitting a linear decay to
the response α as a function of lattice depth, quenched beyond a critical depth
sc. The fit-determined critical depth of sc = 6.2±0.5 is in good agreement with
the peak-width measurement of Fig. 7.4, and with the expected position of the
SF-MI transition in our 1D bosonic gases (shown in green in the plot). We note
that the observed suppression of transport is due to many-body correlations,
as over this range of weak lattice depths the modification of the atoms’ effective
mass alone does not explain the observed suppression.

7.4 Excitation spectra

Lastly, we discuss lattice amplitude modulation spectroscopy [185], which is
a commonly used technique for characterizing the energy spectrum of excited
states in systems of lattice-confined ultracold atoms, based on a sinusoidal
modulation of the optical lattice depth. Similar to the methodology used in
Chapter 3 for exciting higher lattice bands, in weakly-interacting samples or
at large energies this method can provide access to the single-particle excita-
tion spectrum, revealing band-gap energies and band-widths, etc. To study
excitations relevant to gases in the Hubbard regime, however, we now con-
centrate on excitations with energy below the single-particle band-gap. For
non-interacting gases, the spectrum simply reflects the structure of the zeroth
energy band. In the atomic limit (t � U), there is a charge gap with energy
U relating to the creation of a particle-hole pair (doublon-holon). Additional
interaction bands, all with typical bandwidth on the order of t, appear around
energies of 2U (2 doublon-holons), 3U (either 3 doublon-holons or a triplon-
biholon), and so on, as plotted in Fig. 6.4 (a). The emergence of an energy gap
has been used as an indicator of the transition between superfluid and Mott
insulator in ultracold atom systems [27, 31, 185].

In lattice amplitude modulation spectroscopy, the lattice depth is varied
sinusoidally in time as s(T ) = s0 + δs sin(ωT ). Thus, the tunneling energy
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t and the on-site interaction strength U , which both depend on the lattice
depth s, are also modulated in time. The time-varying perturbation to the
system allows coupling to excited states at a spectroscopically defined energy
~ω (to lowest order in the linear response regime [31, 187]). The excitation
mechanism itself [185, 187] can be related to a symmetric two-photon Bragg
process [131] involving the lattice laser beams, in which the modulation effec-
tively introduces frequency sidebands. Typically, the state of the system is
characterized by observing how much energy is deposited at a particular mod-
ulation frequency (with fixed modulation time Tmod and modulation amplitude
δs). We note that there is a wealth of additional techniques used to character-
ize excitations, including phase modulation spectroscopy [205], direct Bragg
spectroscopy [216, 217], coupling to excited states via applied gradients [27],
and photon-assisted tunneling in a gradient [218].

In the experiment, we investigate the excitation spectrum of a sample of
1D Bose gases, having the same properties as in the above examples (s⊥ = 40,
γeff = 0.6), for a variable depth sz of an applied lattice (wavelength λ =
1064 nm) along z. After slowly ramping up the lattice to a depth sz, we
sinusoidally modulate its amplitude by ±15% for Tmod = 80 ms. We then
ramp down the depth to sz = 4 in 5 ms, and allow for 15 ms of thermalization.
We do not directly measure the energy deposition rate, or the energy increase
of the system for fixed Tmod, but rather we release the atoms from this lattice
in time-of-flight (following a π phase-shift as before) and measure the visibility
contrast as a proxy for the amount of thermal energy in the system. We plot
the excitation spectra for lattice depths of sz = 4, 9, and 14 in Fig. 7.6,
with energies normalized to the value of U for sz = 14 (U is only slowly
varying with lattice depth). For the lowest depth of sz = 4, which is expected
to be in the superfluid regime (same transition region as in the preceding
sections), we observe an essentially continuous dependence of the visibility on
the excitation frequency ω. For sz = 9 however, a non-monotonic dependence
of the visibility on ω is observed, and for a depth of sz = 14 well into the Mott-
insulating regime (U/t ≈ 66), resonant peaks at energies of ∼ U and ∼ 2U are
observed. The emergence of these excitation features with increasing sz thus
signal a transition to gapped excitations of particle-hole pairs. We note that
the production of a doublon excitation relies on nearest-neighbor tunneling,
and thus in an inhomogeneous system also depends on the difference between
the site-dependent energy offsets ∆i = εi− εi+1, with excitation at energies at
roughly U ±∆ [218]. Thus, neglecting the small spread in the values of U and
t due to the slowly varying envelope of the lattice beams, the large widths of
the observed excitation peaks in Fig. 7.6 (b,c) are due to the inhomogeneous
external trapping potential, and the resultant spread of the local resonance
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Figure 7.6: Excitation spectra across the superfluid-to-insulator transition in
1D. (a) Visibility as a function of amplitude modulation frequency (normalized
to U/ER = 0.53 for sz = 14), for a lattice depth of sz = 4. (b) Similar data,
but for a lattice depth along z of sz = 9. Fit lines are two Gaussians on a
linear slope. (c) Similar data, but for sz = 14. The emergence of peak-like
structure in (b) and (c) reflect the appearance of a charge gap in the system
in the Mott-insulating regime.

condition for nearest neighbor tunneling.
Here, we have used measurements of the excitation spectrum to highlight

the transition from a superfluid state to a Mott-insulating state. Furthermore,
excitation spectra characteristic of different quantum phases – such as gapped
and ungapped – are also important for the detection of different states of
quantum matter in disordered bosonic systems [28, 46, 48, 68].
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Chapter 8

Atomic mixtures in
state-dependent lattices

More Is Different.

– P. W. Anderson, Science 177, 393–396 (1972)

In this chapter, we discuss the generation of hyperfine state mixtures in our
experiment and briefly review our method for implementing state-dependent
optical potentials. We include a discussion of areas of experimental study
that are made possible with these techniques, and briefly highlight two such
studies that we have performed. These deal with nonlinear atom-optical four-
wave mixing and implementation and study of the two-component bosonic
Hubbard model, as based on our publications Collinear Four-Wave Mixing of
Two-Component Matter Waves, Phys. Rev. Lett. 104, 200402 (2010) [219]
and Superfluidity of interacting bosonic mixtures in optical lattices, Phys. Rev.
Lett. 105, 045303 (2010) [44], which have been discussed in detail in Ref. [45].

8.1 Introductory discussion

Nearly a decade ago, the experimental study of scalar bosons in ordinary
(single-frequency and stationary) three-dimensional (3D) optical lattices [27]
allowed for realization of the 3D Bose–Hubbard model with ultracold atoms [29],
with later studies in 2D [220] and 1D [31, 185]). While the study of scalar par-
ticles in optical lattices is a wide-ranging field in and of itself (especially with
the inclusion of dynamical effects, superlattice structures, and higher-orbital
physics), the introduction of a (pseudo)spin degree-of-freedom (not restricted
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to 1/2) in the particles’ internal state greatly enlarges the number of physical
phenomena that can be studied.

For the situation of having two types of bosons in an optical lattice, which
are both in the Hubbard regime, the system can generally be described by
the two-component Bose–Hubbard model [60–62] (2BHM). One interest is in
studying exotic quantum ground states particular to this Hamiltonian. Inter-
species pairing phenomena – in some analogy to the BCS mechanism – can be
studied in the emergence of so-called pair and counterflow (anti-pair) super-
fluidity [60, 221], in systems in which the single-particle charge excitations are
gapped. Furthermore, the 2BHM can be used to study quantum magnetism
and spin Hamiltonians [59], with state-dependent lattices allowing for the con-
trol of spin-exchange coupling constants. Spin dynamics in these systems can
be used to directly engineer entangled-state resources for quantum comput-
ing [222]. Additionally, more direct methods with spin-dependent potentials
may be used for the generation of many-particle entanglement and squeez-
ing in lattices [223, 224] and in bulk systems [225]. As a matter of practical
importance, studies of the 2BHM may also provide insight into the mecha-
nism underlying the observed loss of decoherence in mixture experiments with
pseudospin-asymmetric tunneling, both for boson-boson [51, 52] and boson-
fermion [54–57] mixtures.

In a recent work of ours [44, 45], we have implemented the 2BHM with a
homonuclear mixture of bosonic particles moving in a 3D lattice with state-
dependence along one lattice axis. Compared to studies of heteronuclear mix-
tures in far-detuned lattices, study of the 2BHM with homonuclear particles
allows for a species-specific tunneling that is not fixed by the mass ratio and
respective polarizabilities of the two species, but rather is tunable through the
wavelength or polarization of the state-dependent lattice potentials. This has
allowed us to span our system across different regimes of the 2BHM. One likely
contribution to the observed coherence loss in atomic mixture experiments oc-
curs when the tunneling of one of the species is much weaker than that of the
other species, and in fact is nearly frozen out: loading mixtures into a lattice
with these tunneling characteristics can result in the dynamical formation of
disorder, so-called quantum emulsions [47, 70]. These quantum emulsions ef-
fectively result from the probabilistic projection of the slower-tunneling atoms’
density onto sites of the lattice. While this comes about somewhat naturally
in multi-species mixtures with species-specific tunneling, there have also been
a number of proposals [66, 67, 71] for the controlled generation of disorder
using localized impurity atoms. One key motivation for implementing disor-
der in this way is the small length scale over which atoms can be localized,
leading to a rather small correlation length of the disordered landscape. As
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Figure 8.1: Two-component mixture in a state-dependent optical lattice [44,
45]. (a) Single-axis momentum-peak width measurement σ. The 1/e half-
width σ of the diffraction peaks is determined by a symmetric multi-Gaussian
fit to the integrated (within the dashed region) 1D momentum profiles, fol-
lowing a π phase-shift of the diffraction envelope. (b) Single-axis visibility
measurement Vis, determined by the contrast of time-of-flight interference pat-
terns. (c) Visibility Vis and peak width σa of the |a〉 component (filled circles),
with fixed lattice depths of Va = 12 ER and V⊥ = 12 E⊥R , in the presence of |b〉
atoms [fb ≈ 3/4, Na +Nb = (3.7± 0.2)× 105] as Vb is increased. Here, the re-
coil energies of the transverse and z lattices, with wavelengths λ⊥ = 1064 nm
and λz = 785 nm, respectively, are E⊥R = h2/2mλ2

⊥ and ER = h2/2mλ2
z.

In reference data taken without |b〉 atoms and with Na = (1.0 ± 0.1) × 105

(open circles), the visibility and peak width are roughly constant at 0.52(3)
and 0.26(2), shown as the dashed lines. Data points are averaged over 3-5
runs, with statistical error bars shown. Cartoons at bottom demonstrate the
regimes in which polaron and quantum emulsion effects can be expected. For
an extended discussion of this experiment, see Refs. [44, 45].
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shown in Fig. 8.7 we have measured the coherence properties [visibility and
momentum-peak width as detailed in Fig. 8.7 (a,b)] of one species (called |a〉)
in contact with a second species (|b〉) whose tunneling was tunable through its
lattice depth Vb. The properties of the |a〉 species were kept constant through-
out, and by itself the |a〉 species was a strongly interacting superfluid near the
Mott insulator transition. For large lattice depths for the |b〉 atoms Vb, i.e. in
a regime where one would expect the formation of quantum emulsion states,
we indeed observe in Fig. 8.7 (c) greatly reduced coherence of the |a〉 species.

A second possible contribution to observed coherence loss in mixture ex-
periments occurs in the opposite limit, when one of the species is very mobile.
Indeed, a reduction of the |a〉 component’s coherence can also be observed in
this regime, as seen in Fig. 8.7 (c) for very small values of Vb. The mechanism
that can lead to reduced spatial coherence in this regime is that of a polaronic
coupling between the |a〉 atoms in the lattice and the highly superfluid back-
ground of mobile |b〉 atoms. In this scenario, the slower-tunneling atoms couple
to density deformations of the faster-tunneling species, represented as phonon
excitations. This coupling between lattice-based atoms and phonon modes of a
superfluid background leads to quasiparticles known as polarons [63] consisting
of atoms surrounded by a density deformation (a dip for repulsive coupling and
a bulge for attractive coupling), described by a coherent cloud of phonons. The
effects of the background on the lattice-confined atoms can be approximately
described through a renormalization of tunneling (effective mass [226]) and
on-site interactions, and the coupling can in fact induce a premature (in terms
of lattice depth) transition to an insulating state as compared to the single-
species case. In dynamical studies of multi-species mixtures [227, 228], the
coupling of the motional state of one species to density excitations of another
might be used to study the phenomenon of Bloch-phonon coupling [229–231],
which is relevant to condensed matter systems.

Polaronic coupling can also induce long-range off-site interactions between
the lattice-confined atoms [63, 64]. For atoms that are mobile, enough to be
able to reconfigure their density distribution through hopping, induced nearest-
neighbor attraction can lead to the formation of polaron clusters, which min-
imize the kinetic energy of density deformations in the bath. In the regime in
which the tunneling of the lattice-confined atoms is completely frozen out, the
coupling of the localized atoms to the delocalized bath can be used to study the
spin-boson model [232], which is fundamental to the study of decoherence and
the dissipative dynamics of qubits coupled to an environment. The qubit may
be represented by a number of possible states of the localized atom - such as
its internal state [233], site-occupancy [234, 235], or orbital wavefunction [119]
- with coupling governed by collisional interaction with the atoms of the bath.
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In recent years, a number of proposals have been presented that suggest using
bath-induced dissipation as a mechanism for cooling atoms in a bath [236],
and more generally for quantum state engineering through dissipation [237].

As a final example, we mention that in the extreme case of one species con-
fined to a lattice and the other unconfined and behaving as an ideal gas, the use
of contact thermometry has been proposed for the characterization of temper-
ature in strongly-correlated lattice gases [238] [however the equilibration time
between atoms with large ratios of (effective) mass may be prohibitively long
in practice due to a mismatch in their dispersion relations [49, 219]]. Also
in this limit, the scattering of free massive particles [49, 80] may be used for
measurement of the dynamic and static structure factors of strongly-correlated
lattice gases, in analogy to photon scattering [131, 192, 239–241].

8.2 Hyperfine-state mixtures

We now discuss the specific internal state structure that allows for atoms to
be in different (pseudo)spin states in our experiments. We consider atoms in
the electronic ground state of 87Rb, the state 2S1/2 [86]. With a spin angular
momentum of S = 1/2 and no fine structure splitting of the L = 0 ground-
state, there is a total electron angular momentum J = 1/2. Inclusion of the
nuclear spin I (I = 3/2 for 87Rb) then leads to the total angular momentum
F = I+J, with allowed values within |J−I| ≤ F ≤ I+J . Thus, interaction of
the nuclear spin and the electron total angular momentum leads to hyperfine
splitting of the ground-state into the F = 1 and F = 2 manifolds, by a fre-
quency ∆hfs ∼ 6.8 GHz. Each manifold is split into different Zeeman sublevels,
defined by their projection along the magnetic field quantization axis mF , with
allowed values of |mF | ≤ F . The Zeeman effect shifts the internal state ener-
gies with applied magnetic field B, and as shown in Fig. 8.2 (a) at low fields,
the separation between adjacent Zeeman sublevels |F,mF 〉 is roughly propor-
tional to field, as ∆E = gµBmFB (here µB = e~/2mec is the Bohr magneton
and g is the Landé g-factor, with gF={1,2} = {−1/2,+1/2} for the ground-state
hyperfine manifolds). A more general dependence of the internal state energy
levels on magnetic field B is plotted in Fig. 8.2 (b), based on the so-called
Breit–Rabi formula [242]. This is based on a combination of the Zeeman shifts
for a given magnetic moment of the electron µJ = gJµBJ/~ and of the nu-
cleus µI = gIµBI/~, described by the Hamiltonian HZeeman = −(µJ + µI) ·B,
and the coupling of these magnetic moments via the hyperfine interaction
Hhf = AhfI · J.

For magnetic fields that are spatially inhomogeneous, conservative poten-
tials can be constructed for atoms in a given internal state, as used in magnetic
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Figure 8.2: Hyperfine energy level structure. (a) Hyperfine state structure of
87Rb electronic ground state, with energy dependence of the Zeeman sublevels
(|F,mF 〉 states) at low magnetic fields B. (b) Ground-state energies as a
function of magnetic field B, at high fields (in Tesla, T = 104 G).

trapping potentials (quadrupole trap and time-orbiting potential (TOP) trap
used for the BEC production, c.f. Chapter 3). The introduction of forces via
spatially-varying magnetic fields is also used for Stern–Gerlach separation of
the different internal states in our experiments. Shortly after releasing the
atoms for time-of-flight expansion, we apply a magnetic field gradient pulse,
which “kicks” the atoms in a state-dependent way. After a suitable duration,
the different “spin”-components fully separate in time-of-flight, and can be
separately imaged onto different regions of the camera’s field of view.

To create mixtures of atoms in different hyperfine states, we need to ad-
dress the atoms with an oscillatory field with frequency matching the hyper-
fine splitting. For this, we use microwave radiation resonant with the hy-
perfine splitting, at a tunable frequency of ∼ 6.8 GHz (with the microwave-
frequency source and antenna used to address the atoms are described in detail
in Ref. [45]). In Fig. 8.3, we display two methods used for populating differ-
ent mixtures of internal states. The first method, as shown in Fig. 8.3 (a), is
simply to address the atoms with microwave radiation of constant intensity
(∝ V ) and with a fixed frequency that is resonant only between two states,
shown here for |r〉 = |1,−1〉 and |b〉 = |2,−2〉. For the two-state system
with resonant driving, the ground and excited state populations will display
an oscillatory dependence with 100% contrast, so-called Rabi-flopping. This
method of internal state control is ideally suited to rapidly transfer popula-
tion, and for creating coherent superpositions of different internal states. The
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Figure 8.3: Transitions between different internal states of the atoms. (a) We
drive coherent Rabi oscillations in the internal state populations, using mi-
crowave radiation that is on resonance with a transition between two internal
states, shown here as red (|r〉 = |1,−1〉) and blue (|b〉 = |2,−2〉). (b) We per-
form Landau–Zener sweeps of the microwave frequency across the resonance,
enabling a well-controlled probability of transition between the two states.
The transition probability can be tuned through the microwave power.

second method is displayed in Fig. 8.3 (b), and is based on the Landau–Zener
protocol [243]. Here, population initially resides solely in the ground-state
level |r〉, and the frequency of the microwave field is ramped linearly across
the transition frequency ωrb. Either the speed of the ramp or the intensity of
the microwave field may be adjusted to control the probability that the pop-
ulation “tunnels” to the excited state |b〉. In Fig. 8.3 (b), we plot final state
populations as a function of the microwave power. This method is especially
well suited to provide highly controllable mixture ratios, with little sensitivity
to variations in the magnetic fields.

In addition to these microwave transitions, we can also make intramanifold
transitions to different states via radiofrequency radiation [109]. Note that, at
low fields the near degeneracy in the energy-splittings between different pairs
of states prohibits a two-level description. However, as seen in Fig. 8.2 (b), at
higher fields this restriction is lifted as the linear description of the Zeeman
shift breaks down. At low magnetic fields, the degeneracy can also be lifted by
“dressing” the energy levels - i.e. shifting the levels in a non-uniform, state-
specific way - by applying microwave fields that are off-resonant with respect to
the hyperfine structure splitting [244, 245]. For homogeneous microwave fields,
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this technique has become an important tool for manipulating internal state
dynamics [246, 247]. In the following section, we shall discuss an analogous
technique of applying off-resonant light fields to shift energy levels in a state-
specific way. However, the applied light fields will in general be spatially
inhomogeneous, and thus can be used to exert forces, including trapping.

8.3 State-dependent optical potentials

We now describe the general methodology used to create state-dependent op-
tical potentials [248–250] in our experiments, using laser beams with tunable
wavelength λ and polarization ε̂. Firstly, when trying to create completely
state-selective potentials, we need to achieve a cancellation of trapping and
anti-trapping potentials. As described in Chapter 2, depending on the sign
of the detuning of a laser frequency ω from an excited-state transition at
frequency ω0, a far-detuned optical potential can either create an attractive
trap (red-detuned, ω < ω0) or a repulsive anti-trap (blue-detuned, ω > ω0).
To create such a cancellation with a single-frequency laser beam, we need to
tune between two different excited-state transitions, such that the laser fre-
quency is red-detuned with respect to one and blue-detuned with respect to
the other. For alkali atoms there are two strong optical transitions from the
electronic ground state, the D1 and D2 lines. For 87Rb these transitions occur
at wavelengths 795 nm and 780 nm, respectively, and the wavelength of our
state-dependent laser light is tunable within this range. In Fig. 8.4 (a), we
show how light with wavelength between the D1 and D2 lines leads to red- and
blue-detuned contributions from different excited-state transitions.

Secondly, we need to create an optical potential that is particular to a
given internal state of the atom. This is based on the conservation of angular
momentum, which for a given polarization state of light only allows transitions
between certain sets of |mF 〉 sublevels. Here, certain ground states may only
experience optical coupling via either the D1 or D2 transitions. In Fig. 8.4 (a,b)
we illustrate how this takes place for the specific case of σ− circularly polarized
light, with a wavelength of λ = 787.56 nm. The |1,−1〉 state couples to excited
states via the D1 and D2 lines, while the |2,−2〉 state is only coupled to the P3/2

level by the D2 line. Thus, the |1,−1〉 experiences a light-shift cancellation
(with zero net potential for the given λ and ε̂), while the |2,−2〉 does not and
experiences an attractive potential.

We now demonstrate how such a state-selective potential can be used in
practice. In Fig. 8.5 (a,b) we show diffraction patterns for two different hyper-
fine states of atoms that are (separately) subject to a state-dependent optical
lattice. One of the species exhibits diffraction peaks, due to coupling to the

99



(a) m   =F -2 -1 0 +1 +2 +3-3

S1/2

P1/2

P3/2

F=1
F=2

F=1
F=2

F=2
F=1
F=0

F=3

σ −

λ = 787.56 nm

}

}

}

D
1 

=
 7

94
.9

8 
n

m

D
2 

=
 7

80
.2

4 
n

m

(b) m   =F -2 -1 0 +1 +2 +3-3

S1/2

P1/2

P3/2

F=1
F=2

F=1
F=2

F=2
F=1
F=0

F=3

σ −

λ = 787.56 nm

Figure 8.4: Basic scheme for creating state-dependent optical potentials.
(a) For certain internal states (shown for |F,mF 〉 = |1,−1〉), σ− polarized
light with a wavelength halfway between the D1 and D2 optical transitions
leads to zero net light-shift, i.e. no optical dipole potential. This effect is due
to a complete cancellation of negative and positive light-shifts, from the light
being red-detuned with respect to the D2 line and blue-detuned with respect
to the D1 line. (b) For a different internal state, |2,−2〉, only coupling to ex-
cited states via the D2 transition is allowed for σ− polarized light, such that no
light-shift cancellation occurs and this state experiences an attractive optical
dipole potential.

light-field, while the other does not. Interesting effects can take place when
both species are present, leading to diffraction peaks being observed for each
of the states, as in Fig. 8.5 (c). As studied in detail in Ref. [219], pair-wise
momentum-exchanging collisions between the two species lead to the appear-
ance of diffraction peaks for the species that experienced no optical potential
[cf. Fig. 8.5 (d)], due to nonlinear atomic four-wave mixing.

After having introduced the general idea behind the method we employ
for producing state-dependent optical potentials, and after discussing some
practical examples, we explain in a bit more detail how one can calculate
such state-dependent light-shifts [45, 114, 248, 250, 251]. We again consider
the dispersive effect of off-resonant laser light acting on neutral single-electron
atoms [102], but now a bit more rigorously than in Chapter 3. For light
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Figure 8.5: State-dependent lattices and atomic four-wave mixing [45, 219].
(a) Diffraction pattern of |a〉 atoms from an optical lattice of wavelength λ =
785 nm and σ+ polarization, pulsed on briefly for τ = 25 µs. Calibration of the
lattice reveals a depth Va = 6 ER, with recoil energy ER = h2/2mλ2. (b) Same
for |b〉 atoms only, with no observable diffracted population. The lattice is
fully state-selective, with Vb = 0 ER. (c) When both species are present and
subject to the state-selective lattice, atoms of the |b〉 species appear in the
diffracted momentum modes. (d) The mechanism for this apparent diffraction
is a pair-wise momentum redistribution between the two hyperfine states, i.e.
nonlinear four-wave mixing of matter-wave fields. For an extended discussion
of this experiment, see Refs. [45, 219].

fields far from resonance, for which direct transitions to excited states can be
ignored (for a detuning |∆/Γ| � 1), the effect of the atom-light interaction
Hint = −d · E (with d the dipole operator and E the local electric field) on
the ground state energy can be treated in second-order perturbation theory.
For some state |i〉, coupling to excited states |j〉 by E induces an energy-level
shift

∆Ei =
∑
j 6=i

|〈j|d · E|i〉|2

Ei − Ej
, (8.1)

with the assumption of a defined quantization axis. For a light field with
intensity I(r, t) possibly varying both spatially and temporally (with I =
ε0cE

2
0/2 and E0 the electric field amplitude), with frequency ω, and of uniform
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polarization ε̂, this can be reexpressed (now including both the rotating and
counter-rotating terms) as

Ui(r, t) =
1

2ε0c

∑
j 6=i

[
|〈j|d · ε̂|i〉|2

~(ω − ωji)
− |〈j|d · ε̂|i〉|

2

~(ω + ωji)

]
I(r, t) , (8.2)

where ~ωαβ = Eα−Eβ. Due to dipole selection rules stemming from conserva-
tion of angular momentum and symmetry considerations [86], only transitions
satisfying ∆L = ±1, |∆J | ≤ 1, |∆F | ≤ 1, and ∆mF ≤ 1 are allowed, such
that typically only a few excited states will contribute to the level shift for a
given polarization of the light field.

We now focus more narrowly on the system at hand, 87Rb atoms within the
2S1/2 ground state, either in the F = 1 or 2 manifold, coupled to the 2P1/2 and
2P3/2 excited states by the D1 and D2 transitions, respectively. Here we can,
ignoring counter-rotating terms, approximate the induced dipole potential as

Ui(r, t) =
3πc2

2

[
ΓD1

ω3
D1

∑
j∈2P1/2

|cji|2

ω − ωji
+ 2

ΓD2

ω3
D2

∑
j∈2P3/2

|cji|2

ω − ωji

]
I(r, t) (8.3)

for a given polarization of the light field q = 0,±1 (q = 0 corresponding to
linear π polarization and q = ±1 to circular σ±), with the factor of two coming
from the different line strength factors of the D1 and D2 lines. Here ΓDα and
ωDα are the natural line-width and transition frequency of the Dα transition
(α ∈ {1, 2}), respectively. The term cji is the Clebsch–Gordon coefficient for a
given polarization q and set of states |i〉 = |F,mF 〉 and |j〉 = |F ′,m′F 〉, defining
the angular part of the dipole matrix element as cji = 〈F ′ m′F |F 1 mF q〉 [113].

For detunings ∆1,2 = ω − ωD1,2 that are small compared to the fine
structure splitting ∆fs (∆fs/2π ∼ 7 THz for 87Rb) but large compared to
the excited-state hyperfine structure splittings ∆′hfs (with the largest being
∼ 2π × 800 MHz), small differences in the transition frequencies ωji can be
neglected. After also setting the nearly equal quantities ΓD1/ω

3
D1
≈ ΓD2/ω

3
D2

to Γ/ω3
0, we then arrive at a much simplified form of the dipole potential ex-

perienced by the state |i〉 ≡ |F,mF 〉 for a given polarization q of the light
field [250, 251]

U(r, t) =
πc2Γ

2ω3
0

[
1− gFmF q

∆1

+
2 + gFmF q

∆2

]
I(r, t) . (8.4)

One serious consideration to keep in mind when using state-dependent op-
tical potentials, given their relatively small detuning from excited-state tran-
sitions, is the effect of spontaneous photon scattering or Rayleigh scatter-
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ing. By ignoring the counter-rotating term in Eq. 8.2 and incorporating the
earlier used form of the scattering rate for far off-resonant dipole potentials
Γscatt = ΓUdipole/~∆, we can describe the total scattering rate for a state |i〉
from coupling to excited states |j〉 as

Γi(r, t) =
1

2ε0c

∑
j 6=i

[
Γj|〈j|d · ε̂|i〉|2

~2(ω − ωji)2

]
I(r, t) . (8.5)

Alternatively, we can apply the expression for Γscatt separately to the D1 and
D2 line contributions of Eq. 8.4, yielding the approximate form

Γi(r, t) =
πc2Γ

2~ω3
0

[
Γ1

1− gFmF q

∆2
1

+ Γ2
2 + gFmF q

∆2
2

]
I(r, t) . (8.6)

For the typical laser intensities used in our studies with state-dependent
optical lattices, heating due to Rayleigh scattering becomes the main limitation
on the lifetime of the experiments, on the order of a few 100 ms. While these
timescales allow for the study of many interesting effects as discussed in the
following chapters, processes occurring at rates of a few Hz or requiring very
low temperatures, such as those based on engineered spin-exchange [59], will
likely be hard to observe due to this incoherent photon scattering.

Having introduced the essentials for calculating light shifts and scattering
rates for the most general of situations, we now plot in Fig. 8.6 calculated
dipole potentials and scattering rates (using Eqs. 8.2 and 8.6) as a function of
wavelength in the vicinity of the D1 and D2 transitions (using 87Rb transition
line data from Ref. [113]). Our experiments incorporate in some capacity
optical potentials with wavelengths in this range. We note that laser light fields
in general will not be restricted to either linear or circular polarizations, but
may be represented as a coherent superposition of σ+ and σ− contributions.
Fig. 8.7 shows the experimentally measured polarization dependence of the
state-dependent optical lattice depth, in a fully retro-reflected geometry using
light with wavelength λ = 785 nm. The induced lattice depth due to a state-
dependent coupling to excited states is measured with respect to the states
|a〉 = |1,−1〉 and |b〉 = |2,−2〉.

8.4 A moving state-dependent optical lattice

Here, we briefly also detail the implementation of a moving state-selective
lattice potential. A standard method for the generation of a moving optical
lattice is through the interference of two laser beams of the same wavelength
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Figure 8.6: Energy shifts and scattering rates as a function of optical wave-
length. (a) Ratio of energy level shift ∆E to light intensity I, shown for σ−,
π, and σ+ polarizations and for the hyperfine states |a〉 = |1,−1〉 (red dashed
line) and |b〉 = |2,−2〉 (blue solid line). (b) Ratio of incoherent scattering rate
Γ to light intensity I, for polarizations and internal states as in (a).

λ, but with a slight frequency difference δf [215, 252, 253]. For fixed frequency
detuning δf , the optical interference pattern moves with a constant velocity
vL = δf(λ/2). This frequency detuning may be experimentally achieved in
many ways, such as by changing the optical path length in a fully retrore-
flected geometry - either by a moving mirror, a rotating dispersive element,
or with a modulated electro-optical element - or by frequency-shifting with
acousto-optic modulators (AOMs). Due to a greater stability and control of
the frequency-shifts, we use radiofrequency-driven AOMs. We use a phase-
stable setup shown in Fig. 8.8 (a). Some portion of the incident laser beam is
reflected by a polarizing beam-splitter (with the transmitted pathway blocked
off). The reflected light passes through two AOMs, driven by two frequen-
cies different by δf , and is diffracted into the first (+1) and minus-first (−1)
orders respectively. This beam, frequency-shifted by δf , is then rotated in po-
larization and transmitted back through the polarizing beam splitter, nearly
antiparallel to the forward-traveling beam. Finally, the light’s polarization is
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Figure 8.7: The polarization dependence of a fully retro-reflected optical lat-
tice acting on atoms in two internal states, |a〉 = |1,−1〉 and |b〉 = |2,−2〉.
The main plot shows the polarization dependence of the ratio of optical lat-
tice depths experienced by the two states Vb/Va, with the inset showing (in
arbitrary units) the individual dependence of each of the two states on po-
larization. The polarization axis is parameterized by the rotation angle of
a polarization λ/4 waveplate, which is used to change the polarization from
linear π to circularly polarized, either σ+ or σ−. Data are determined from
Kapitza–Dirac diffraction spectra.

again changed through use of quarter- and half-waveplates, so that at the po-
sition of the atoms the forward-going and backwards-going pathways have the
same polarization. In Fig. 8.8 (b), we show time-of-flight images of expanded
clouds of atoms from a moving lattice (originally loaded in a stationary lattice
to form a deep Mott insulator state) for several velocities.

In Chapter 10, we shall use this moving state-selective lattice to study the
scattering of free neutral atoms from crystals of localized atoms. In regard
to characterizing strongly interacting systems, it can be also used as a tool
for inelastic Bragg spectroscopy [131], phase-modulation spectroscopy [205],
and, in the state-dependent case, for detecting the dynamic spin-response
of bosonic mixtures [254]. Furthermore, arbitrary control over the phase-
modulation [255] of a state-dependent lattice may also allow for the engineer-
ing of spin-dependent gauge potentials for ultracold mixtures, i.e. to create
spin-orbit coupling [256] in lattice-dressed matter-wave mixtures.
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Figure 8.8: (a) Moving optical lattice setup. The interference of two laser
beams, with equal polarization and wavelength λ, up to a slight frequency
difference δf , creates optical lattices moving with a velocity vL = δfλ/2.
(b) Time-of-flight images of expanded clouds of atoms released from a moving
optical lattice. The change in center-of-mass positions along z corresponds to
the change in vL, shown for frequency detunings of δf = {15, 30, 45} kHz and
corresponding lattice velocities vL/vR = {1, 2, 3}, with vR = h/mλ the recoil
velocity and λ = 785 nm.
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Chapter 9

Glassy behavior in a binary
atomic mixture

In this chapter, we report on the experimental study of disordered one-dimensional
(1D) Bose gases, where the disorder is generated with an incommensurate op-
tical standing wave consisting of two spatial frequencies. The standing wave
plays the role of a disordering agent, either directly through an associated op-
tical lattice potential or by selectively pinning impurity atoms to the intensity
maxima of one of the two constituent standing waves. We use such randomly
distributed localized impurity atoms to study the effect of uncorrelated disor-
der on 1D lattice-modulated Bose gases. We then make comparisons to the
case of correlated quasi-disorder, which is formed by an incommensurate lat-
tice potential that acts directly on the 1D gas. While the effects of the two
disorder realizations are comparable deeply in the strongly interacting regime,
both showing signatures of Bose glass formation, we find a dramatic differ-
ence near the superfluid-to-insulator transition. In this transition region, we
observe that random, uncorrelated disorder leads to a shift of the critical lat-
tice depth for the breakdown of transport as opposed to the case of correlated
quasi-disorder, where no such shift is seen. Our findings, which are consistent
with recent predictions for interacting bosons in one dimension, illustrate the
important role of correlations in disordered atomic systems. This chapter is
based on our publication Glassy behavior in a binary atomic mixture, Phys.
Rev. Lett. 107, 145306 (2011) [46].

9.1 Introductory discussion

The presence of disorder is inherent to solid state systems, and it has profound
effects on transport in a variety of contexts, ranging from electron conductivity
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in metals to dirty superconductors [257]. Quantum gases in optical lattices [26]
can, with a high degree of experimental control, elucidate the role played by
disorder in a number of physical phenomena. Recently, Anderson localization
of matter-waves in disordered potentials has been observed for non-interacting
gases [33, 34], and additionally, the reemergence of superfluidity due to repul-
sive interactions [74]. Discerning the (at times) competing roles of disorder and
interactions is key to the understanding of Bose-glass behavior [28, 48, 258] in
strongly interacting disordered systems. Ultracold atomic systems [68, 69, 75]
should provide a versatile testbed to aid in this endeavor [37].

Previous studies of ultracold atoms in disordered potential landscapes, gen-
erated by optical fields, have generally suffered from strong correlations of the
disorder that decay over length scales greater than either the healing length
of the superfluid or the lattice spacing. This is true for both speckle po-
tentials [34, 69, 75] that are diffraction-limited to structures on the order of
the generating laser field’s wavelength, and quasi-disordered bichromatic lat-
tices [33, 68, 74], which over large distances exhibit perfect correlations that
may make them rather unsuitable for the realization of true disorder. To cir-
cumvent these limitations, recently it has been proposed [47, 66, 67, 71] to
use atomic impurities, which can be confined to regions much smaller than a
lattice spacing, to act as point-like defects.

The sudden quench of an atomic impurity field acting on mobile particles
has been proposed [67, 71] for the study of dynamical, out-of-equilibrium re-
sponse to disorder. Alternatively, theoretical studies [47, 70] have shown that
even a slow “freeze-out” of the tunneling of one species from an initially ho-
mogenous mixture can lead to metastable “quantum emulsion” states, typified
by local separation between frozen and mobile atoms (for repulsive interac-
tions) and displaying properties similar to an equilibrium Bose glass. The
study of quantum emulsions may help shed light on the coherence-loss mecha-
nism in a number of experiments involving mass-imbalanced atomic mixtures,
both for the boson-boson [51] and boson-fermion [54–56] cases.

In this chapter, we report on experimental studies of interacting 1D Bose
gases in the presence of disorder. We have studied the effects of uncorrelated
disorder formed by atoms of an auxiliary spin state “frozen” to sites of an
incommensurate lattice, and compare to the case of correlated quasi-disorder
from an incommensurate bichromatic optical lattice. While both disorder
types drive strongly interacting samples into an apparent Bose glass state,
a large difference is seen for intermediate interactions, where we find that
uncorrelated disorder has a dramatic effect in driving the system towards an
insulating state. Our observation of enhanced localization for a more random
disorder is consistent with recent theoretical predictions for interacting bosons
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in 1D [259].

9.2 Experimental procedure

To briefly describe our experimental procedure, we begin with an optically
trapped Bose–Einstein condensate of 87Rb atoms. In 200 ms we load an array
of isolated, one-dimensional tubes formed by the intersection of two optical
lattices. These lattices are of period d = λ/2 and depth 40 ER (with λ =
1064 nm, ER = (h/λ)2/2m, Planck’s constant h, m the atomic mass). The
atoms are trapped along the tube axis z by a nearly harmonic potential of
trapping frequency ωz/2π = 80 Hz. A lattice along z, also of period d and
with variable depth s (in units of the recoil energy ER), is smoothly ramped
up within 100 ms. This primary lattice will serve to define the sites (with
index i) and parameter values (tunneling t, and on-site interaction U) of the
the (disordered) Bose–Hubbard Hamiltonian we shall use to characterize the
system.

Initially, the tubes contain only atoms in the |F,mF 〉 ≡ |2,−2〉 hyperfine
ground state. To create localized atomic impurities that act as uncorrelated
disorder, a fraction (fimp) of the total population of 8×104 atoms is transferred
to the |1,−1〉 state via a microwave Landau–Zener sweep. The impurity atoms
are loaded into a completely state-selective lattice [44] along z in 20 ms. This
lattice has spacing d′ = λ′/2, with λ′ = 785 nm, and the impurity atoms
are deeply localized at 20 E ′R (recoil energy E ′R = (h/λ′)2/2m ∼ 1.8ER). As
we begin with an initially homogeneous spin-mixture (i.e. with no spatial
dependence of the spin expectation value), and the lattice loading is fast with
respect to global mass redistribution in our 1D system (but slow with respect to
intra-site band dynamics), this situation has been shown in several theoretical
studies to lead to a so-called “quantum emulsion” state [47, 70, 71], in which
the localized or slow-tunneling atoms can serve as static disorder for the faster-
tunneling atoms. When considering the case of impurity creation starting from
a homogeneous spin mixture, the loading should lead to a superposition of
many different random distributions or impurity atoms, i.e. to many different
realizations of disorder. In fact, the use of atomic quantum fields in such a
manner has been suggested because of this quantum parallelism [67, 71]. In
the end, the measurement will show the response of the system to one such
probabilistic spin projection (for each of the independent tubes). In what
follows, we refer to the typically equal mixture used (fimp = 0.5, equal parts
frozen and mobile atoms) as “the mixture”.

The cartoon in Fig. 9.1 (a) qualitatively depicts such a one-dimensional
system of lattice-trapped bosons with embedded impurities. It shows that, af-
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∆i = εi - εi+1(a) (b)

Figure 9.1: Disordered one-dimensional Bose gases. (a) To create a disordered
impurity-field, half the atoms of a lattice-trapped Bose gas are converted to
an auxiliary spin state (red) and localized to a state-selective incommensu-
rate lattice (dashed green). (b) Alternatively, a weak incommensurate lattice
(green) is superimposed onto a lattice-trapped Bose gas. In both cases, the
secondary potential (atomic or optical) causes site-dependent energy shifts εi
and site-to-site energy differences ∆i. Here we show an average filling of 1
atom of either spin state per site, while in the experiment we have an inho-
mogeneous system with a typical central filling factor of n ∼ 3 (total) atoms
per site.

ter creating a homogeneous spin mixture, we slowly freeze the impurity atoms
(red) to a deep state-selective lattice (dashed green) of incommensurate spac-
ing. For comparison to a well-studied case of correlated disorder, we also
study bosons in an incommensurate bichromatic lattice system [33, 68, 74],
as depicted in Fig. 9.1 (b). For this alternate disorder implementation, we
begin with a sample of 4 × 104 atoms in the state |2,−2〉 (i.e. same number
of mobile atoms as for the case of uncorrelated disorder). We then ramp up a
secondary lattice in 20 ms, of spacing d′ and variable depth s′ ×E ′R, onto the
|2,−2〉 atoms. In general, due to the external trapping potential, our system
is not homogeneous but can be characterized by a typical central filling factor
of n ∼ 3 (total) atoms per site. The depictions in Fig. 9.1 are intended to
show the key aspects of the two schemes for disorder implementation, while
they are not necessarily representative of our actual densities.

A brief note on the timescales of adiabaticity in our system, in relation
to our experimental sequence: the timescale over which we “turn on” the
disorder ensures that we are adiabatic with respect to local excitations (i.e.
on-site band excitations for either of the species), however it strongly deviates
from adiabaticity with respect to the global ground state of the system. In
fact, the dynamical creation of disorder in a quantum emulsion relies on this
non-adiabaticity, as the true ground-state in such a system will typically be
characterized by global phase separation between the slow-tunneling and fast-
tunneling species (assuming, as in our experiments, that interactions between
slow-tunneling atoms are stronger than those between fast-tunneling atoms
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and interspecies interactions, i.e. Uss > Usf > Uff ), with the more mobile
atoms moving to the outer regions of the trap. This is a rather boring state,
at least with regard to studies of disorder. The quantum emulsion state [47],
on the other hand, is a metastable state characterized by a disordered ar-
rangement of the densities of the two species. The pathways by which this
metastable state may relax, such as by global mass redistribution of the two
species, are effectively cut off by the insulating nature of the state.

9.3 Disordered Bose–Hubbard gas

In both cases, the dynamics of the mobile atoms can approximately be de-
scribed by the Bose–Hubbard Hamiltonian (BHH) [28, 29]

Ĥ = −t
∑
i

(â†i âi+1 + â†i+1âi) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

n̂iεi , (9.1)

where t and U are the tunneling and interaction energies of the mobile atoms,
and âi, â

†
i , and n̂i = â†i âi are the annihilation, creation, and number operators

for particles at lattice site i. While in a typical system the site-dependent
energy shifts εi will take the slowly varying form εi = mω2

zd
2i2/2 due to har-

monic trapping, here they will be largely determined by the added disordering
potentials. Neglecting harmonic confinement, we consider the effect of disor-
der in generating random site-to-site energy differences ∆i = εi − εi+1, which
define the resonance conditions for single-particle intersite tunneling. The dis-
ordering potentials, inhomogeneous over individual sites, will in general have
a second (likely more minor) effect of modifying the local on-site wavefunc-
tions of the atoms. For strong perturbations this will necessitate a multi-band
treatment, and will lead to a spread of site-dependent values for both t and U ,
with the possibility of asymmetric tunneling. In the following and in Eq. 9.1,
we consider only modifications of the ∆ distribution and neglect the effects on
t and U .

The introduction of random or pseudorandom ε (∆) distributions leads to
the disordered Bose–Hubbard model (dBHM), which has been important for
the description of experimentally relevant systems [28, 37, 204], such as cold
4He atoms in porous media and bosonic Cooper pairs in Josephson junction
arrays. Aside from understanding better the physics of these analogous sys-
tems, experimental studies of the dBHM with ultracold atoms are important
for several reasons. Currently, there is still active theoretical research aimed
at detailing the phase diagram of the dBHM and understanding the nature of
the superfluid-to-insulator transition [28, 260], and experimental efforts may
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play a complementary role in this regard. These studies are also interesting as
the dBHM displays a non-trivial many-body phase – the Bose glass – which
to date has not been unambiguously observed in any cold atom experiment.
The Bose glass phase is insulating, as in the Mott insulating state, however
it has no discrete excitation gap and displays non-zero number fluctuations,
i.e. non-zero compressibility. Study of disordered scalar bosons should also
help pave the way for the study of disordered spin Hamiltonians and spin glass
phases [37]. Lastly, the study of the dBHM in 1D is interesting as it exam-
ines the intersection of two fundamentally different localization phenomena
in low-dimensional bosonic systems. In the absence of interactions, random
disorder leads to localization of the one-dimensional bosonic wavefunctions for
arbitrarily weak values of the disorder strength. At the opposing case, for fixed
density but in the absence of any modulating potential - disordered or other-
wise - strong repulsive interactions can mimic Pauli blocking and induce the
localization of single-particle wavefunctions, through the so-called fermioniza-
tion of bosons into a Tonks–Girardeau gas [199]. The physics of the Bose glass
phase, which results from a competition between disorder and strong repulsive
interactions, thus interpolates between these two extremes.

In general, the many-body ground state and excitations of the dBHM
will be defined by the filling factor n̄ = µ/U + 1/2, as well as by a com-

petition between t, U , and ∆̃, where ∆̃ characterizes the scale of the ran-
dom energy shifts. There will also be a dependence on the details of the
∆-distribution [28], e.g. quasirandom [259, 261] vs. random (including un-
bounded Gaussian noise [28], box-top distributions [28], random binary disor-
der [262], etc.). Here, we contrast the disordered ∆-distributions characteristic
of randomly located impurity atoms and an incommensurate lattice potential,
respectively, by showing histograms of site-to-site energy shifts (for 1000 sites).
To calculate each distribution, we begin by assuming ground-state Wannier or-
bitals of the |2〉 ≡ |2,−2〉 atoms in a three-dimensional lattice with isotropic
lattice spacing d and with depths sx,y,z = {40, 40, 6}ER, ωi(r) (with i the site
index). For a generic disordering potential Vdis(r) that is random across the
lattice, the site-dependent energy shift is given by εi =

∫
d3r|ωi(r)|2Vdis(r)

with the integral taken over site i (±d/2 along each axis). For the incommen-
surate lattice potential, we homogeneity along x and y (as the lattice beam
has a 230 µm waist) and a form Vinc(z) = s′E ′R sin2(k′z), where k′ = 2π/λ′

and s′ = 1. The histogram of ∆ values for this quasiperiodic lattice is plot-
ted in Fig. 9.2 (b). For the random impurity potential, Vimp(r), we begin by
assuming a fifty-percent mixture of impurity atoms (state |1〉 ≡ |1,−1〉) that
are localized to sites of the very deep state-selective lattice along z, of spacing
d′ and depth sz = 20E ′R, with a corresponding Wannier orbital ω̃j(r). The
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site indices that play host to impurity atoms, jk with index k ranging from
1 to 500, are determined by projecting out impurities from a distribution of
hard-core bosons on the primary lattice, i.e. with no multiple occupancies
per site and with positions forced to the nearest site of the secondary lattice.
We then represent the total impurity potential as Vimp(r) = g12

∑
k |ω̃jk(r)|2,

where g12 is the interspecies scattering length between |1〉 and |2〉 atoms, nom-
inally taken as 100 a0. A histogram of ∆ values for the impurity potential is
shown in Fig. 9.2 (a). We note that given our actual densities and the inho-
mogeneity of the system as discussed earlier, a more realistic representation of
our ∆ distributions would vary over the system and would support multiple
impurity occupancies per site.

While both of these distributions are contiguous and extend beyond±∆/U ,
the details differ considerably. The impurity distribution is peaked about
∆/U = 0 due to adjacent impurity-free sites, while the bichromatic lattice
distribution is peaked at the outer-bounds of the distribution. In Fig. 9.2 (c,d)
we plot the normalized autocorrelation function

χj = 〈∆i∆i+j〉i/〈∆i∆i〉i . (9.2)

The perfectly regular correlations in Fig. 9.2 (d) are a known attribute of quasi-
disordered incommensurate lattices [259, 261]. In contrast, for the atomic im-
purity field – which combines the irregular spacing of bichromatic lattices and
the irregular, probabilistic filling of binary disorder – off-site correlations are
strongly suppressed. This difference can have profound effects, as the local-
ization properties of a system will generally depend on both the strength and
correlation length of the disorder potentials [263, 264]. An extreme case can
be found for non-interacting particles in 1D, where random disorder leads to
Anderson localization for any finite disorder strength ∆ 6= 0, while incommen-
surate lattices induce localization only beyond a critical lattice depth [33, 204],
i.e. in the Aubré–Andre transition [164]. One final, fairly natural way to char-
acterize the two distributions is by their respective spatial frequency compo-
nents. As is clear, the potential landscape of the quasi-disordered bichromatic
lattice should have only two spectral components at spatial frequencies k1 and
k2. This, however is not so for the case of impurity atoms that are randomly
located at the sites of the incommensurate lattice. Here, random occupation
(and thus vacancies) can lead to many more spatial frequency components. In
Fig. 9.2 (e,f), we plot the spatial frequency power spectra (zoomed-in over a
small scale) of the two distributions (random and quasi-disordered). Here, the
spectra are for the continuous potential landscapes, and not discrete in terms
of site indices. Both spectra contain dominant peaks at spatial frequencies
k/k1 = 1 and k/k1 = d1/d2 ∼ 1.35, due to the primary and secondary lattices,
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Figure 9.2: (a,b) Histograms of calculated ∆-distributions for the cases of
the mixture (assuming either 0 or 1 impurities per site) and an incommen-
surate lattice of depth s′ = 1. Both are for a primary lattice depth s = 6
(U/ER = 0.4). (c,d) Autocorrelation function χj = 〈∆i∆i+j〉i/〈∆i∆i〉i of the
∆-distributions in (a,b), as a function of the site-to-site distance j. The av-
eraging is over 1000 sites. (e,f) Spatial frequency power spectra for the same
distributions as above. Both spectra contain dominant peaks at spatial fre-
quencies k/k1 = 1 and k/k1 = d1/d2 ∼ 1.35, due to the primary and secondary
lattices, respectively. In the case of impurity atoms, however, the probabilis-
tic filling of |1,−1〉 atoms within the incommensurate lattice leads to higher
harmonics at k/k1 ∼ 2.7 and 4, as well as to a broad continuum at low spatial
frequencies, reminiscent of a “white noise” distribution.
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respectively. In the case of impurity atoms, however, the probabilistic filling
of |1,−1〉 atoms within the incommensurate lattice leads to higher harmonics
at k/k1 ∼ 2.7 and 4, as well as a broad continuum at low spatial frequencies,
reminiscent of a “white noise” distribution.

9.4 Results and discussion

9.4.1 Excitation spectra

We begin our investigation into the effects of disorder by measuring excitation
spectra, which relate most directly to the distribution of site-to-site energy
shifts. Along with a finite compressibility [265, 266], a gapless excitation spec-
trum is a characteristic feature distinguishing a disordered Bose glass state
from a (homogenous) Mott insulator. We measure the excitation spectra by
performing amplitude-modulation spectroscopy [31, 68, 185] of the primary
z-lattice at driving frequencies ωmod/2π. As described in Chapter 8, we si-
nusoidally modulate s by ±15% for 80 ms, ramp down to s = 4 in 5 ms,
and allow 15 ms of thermalization. When used, the incommensurate lattice is
turned on in 20 ms prior to modulation and off in 5 ms concurrent with primary
lattice ramp-down. From time-of-flight interference we measure the visibility
η−/η+ [44], with η± = N+1+N−1±2N0; N0(±1) apertures in Fig. 9.4 (d). For the
disorder-free case (∆i ≈ 0) in Fig. 9.3 (a), with the sample chosen to be deep
into the 1D Mott regime (s = 14 , U/t ≈ 66), the excitation spectrum exhibits
resonant structure. The resonance positions are consistent with the excitation
of particle-hole pairs at U/h [27, 185] (and 2U/h due to either higher-order
processes or excitation at the edge of Mott domains [27, 185]). In contrast,
for both the atomic impurity mixture (Fig. 9.3 (b)) and for an incommensu-
rate lattice of depth s′ = 1 (Fig. 9.3 (c)) having comparable ∆-distribution
bounds, we observe flat excitation spectra (cf. [68]). These observations are
expected [28] for broadly-filled ∆-distributions with bounds ∆max > U , and
are consistent with the system being in a Bose glass state (future compress-
ibility measurements [266] should allow for the disambiguation between a true
Bose glass [28, 48, 258] and a disordered Mott state [267]).

While the observed spectral properties are consistent with Bose glass for-
mation, transport measurements are necessary to confirm insulating behavior.
Here, we study the effects of disorder in the transition region between super-
fluid and insulator, determining the critical lattice depth at which the systems
become insulating through the study of localization and transport. In regard
to the former, the momentum-peak width of a released sample (related to the
inverse correlation length ξ−1 of the sample in-situ [188]), exhibits a sudden
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Figure 9.3: Disappearance of excitation gap due to disorder. (a) Visibility as
a function of amplitude modulation frequency (normalized to U/ER = 0.53
for s = 14), in the absence of disorder for s = 9 and s = 14 (open and filled
black circles). Fit lines are two Gaussians on a linear slope. (b) For s = 14,
with atomic impurities, open purple squares and filled red squares represent
fimp = 0.1 and 0.5, respectively. (c) For s = 14, with an incommensurate
lattice of depth s′ = 1 (orange triangles) and no impurities. Solid error bars are
statistical over several runs, while dashed are estimated errors for individual
runs (120% of maximum statistical error).

increase accompanying an abating superfluid fraction and loss of off-diagonal
long-range order [212]. As for the latter, it has been shown [185, 214] that the
response to an applied impulse dies away upon entering the strongly correlated
regime, and can serve as a signature of insulating behavior [31, 75].

9.4.2 Transport and spatial coherence measurements

To study transport, we look at how the system evolves after an applied impulse.
A magnetic-field gradient along z is pulsed on for a duration of T = 1.2 ms
and applies a variable force F ranging from 0 to Fmax/m = 1.2 m/s2, resulting
in an impulse I = F × T . As illustrated in Fig. 9.4 (a), we characterize the
response as a function of I (with slope α) by monitoring the center-of-mass
velocity along z in time-of-flight absorption images following a brief (∼1 ms)
ramp-off of the z-lattice. As explained in Chapter 8, we access the momentum-
peak width as in [68, 185] by releasing the atoms in time-of-flight following
a 50 µs lattice ramp up to s = 20 and a gravitational phase-shift along z
(without impulse or lattice ramp-off). We then determine the peak width σ
by a fit to the profile of symmetric diffraction peaks on top of an incoherent
background, as shown in Fig. 9.4 (d).
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Figure 9.4: (a) The response to impulse is determined by a straight-line fit
(with slope α, normalized to the case of free atoms) to the dependence of
velocity on applied impulse I (profiles shown for disorder-free and impurity
mixture cases; recoil velocity vR = h/2md). (b) α versus lattice depth s for
bosons without disorder (black circles) and with atomic impurities (fimp = 0.5,
red squares). Lines and surrounding shaded regions are fits to the data with
confidence regions (1 s.d.) of a linearly decaying response, with no response
(α = 0) beyond a depth sc. (c) Similarly, but for an incommensurate lattice
(s′ = 3, green diamonds), with disorder-free data reproduced for comparison.
(d) The momentum-peak width σ (1/

√
e half-width) is determined by a sym-

metric multi-Gaussian fit to time-of-flight interference patterns. The shaded
regions about v/vR = 0(±1) are used to count N0(±1) for visibility measure-
ments of Fig. 9.3. (e) σ versus s for 1D bosons without disorder and for the
mixture (colors/symbols as in (b)). The straight line for the disorder-free data
is a fit of a linear increase beyond a depth sc. The first few data points for
the case of atomic impurities are connected as a guide to the eye. (f) Simi-
larly, but for an incommensurate lattice with s′ = 2 (blue triangles) and with
disorder-free data reproduced.
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Figure 9.5: (a) Critical intercept sc as a function of the incommensurate lattice
depth s′ from linear fits to momentum-peak-width data. (b) Critical intercept
sc as a function of s′ from the impulse-response data. (c) The fit values of α0

(y-axis intercept of linear fit to impulse-response data) as a function of the
incommensurate lattice depth s′.

We find that for the impurity mixture, the mobile atoms are more easily
driven towards insulating behavior. Similar to [31], we determine the critical
point at which the atoms become unresponsive to impulse by fitting a linear
decay to the response α as a function of lattice depth. As shown in Fig. 9.4 (b),
this fit to the transport measurements yields a critical depth sc = 3.0 ± 0.5.
While we do not fit the peak width data, a kink near sc ≈ 2 can be ob-
served in Fig. 9.4 (e). These values are roughly half of those measured for the
disorder-free case, with values of sc = 6.2± 0.5 and 5.7± 0.5 based on impulse
response and peak width, respectively. The value of sc ≈ 6 is close to the ex-
pectation for our given densities and interaction strengths. For our sample of
one-dimensional systems, which have a tube-averaged Lieb–Liniger parameter
value of γ = 0.6, estimates (see Eqs. 6.19 & 6.18) based on the Bose–Hubbard
and sine-Gordon models predict sc = 6.2 and sc = 4.7, respectively [31]. The
Lieb–Liniger parameter is determined as γ = mg1D/~2n1D [204], with a 1D den-
sity n1D, an effective 1D interaction strength g1D ≈ 2~ω⊥a [195], s-wave scat-
tering length a ≈ 5.3 nm, and transverse trapping frequency ω⊥ = 2π×26 kHz.

For the incommensurate lattice, transport data for s′ = 3 is shown in
Fig. 9.4 (c). In this case no shift of the critical depth is seen. The momentum-
peak width data mirrors this lack of a shift of the transition point, shown for a
value of s′ = 2 in Fig. 9.4 (f). Indeed, for the range of incommensurate lattice
depths considered (we restrict to s′E ′R/sER . 1 in the transition region to keep
the depth of the secondary lattice less than the first), no shift of the critical
point can be seen for either of the two measures. We show in Fig. 9.5 (a) and
(b) the fit-determined values of sc as a function of s′ from the peak-width and
impulse-response measures, respectively. Although no shift of the critical point
is seen, we do find that the incommensurate lattice has a detrimental effect on
transport. The response to impulse is generally suppressed, characterized by
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a reduced y-axis intercept α0 (i.e. α for s = 0), as is plotted in Fig. 9.5 (c) as
a function of s′.

While both incarnations of disorder resulted in an apparent Bose glass state
for very deep lattices, a clear difference was seen in their effect on more weakly
interacting samples. In attempting to account for the observed difference, a
natural consideration is the disparity in their correlations [χj, cf. Fig. 9.2 (c,d)].
In general, one expects that the less correlated the disorder, the more enhanced
is the localization [263, 264]. For interacting bosons in 1D, it has been shown
theoretically [259] that the localization transition occurs for a more weakly in-
teracting gas (larger values of the Luttinger exponent K or lower values of the
Lieb–Liniger parameter γ [204]) in uncorrelated disorder than for correlated
disorder. Our observations of a sizeable shift of the transition point for impuri-
ties and a negligible shift for an incommensurate lattice are thus in qualitative
agreement with expectations based on their dissimilar correlation properties.

Also relevant to our observations is the reduction of phase-space density
in the presence of localized impurities, as well as of the atomic density due
to the dynamical formation of impurities from the mobile species. The first
effect has been shown [268, 269] to be responsible for adiabatic heating and
loss of coherence in recent Bose–Fermi mixture experiments [56], due to re-
duced entropy following a reduction in effectively occupiable sites, both for
attractive and repulsive interactions. The second effect is more particular to
“quantum emulsion” [44, 47, 71] experiments. Here, reduced density leads to
more strongly correlated many-body states in 1D and thus favors increased
localization and insulating behavior.

9.5 Concluding remarks

In conclusion, we have observed signatures of Bose glass formation in 1D Bose
gases with superimposed disorder, both for atomic impurities and for quasi-
disordered bichromatic lattices. The two disorder types have dramatically
different effects in the transition region between superfluid and insulator, with
atomic impurity disorder inducing localization in much more weakly inter-
acting gases. Our observation that a more weakly correlated disorder leads
to enhanced localization is in qualitative agreement with recent theoretical
predictions for interacting 1D boson systems. Future experiments aimed at
measuring a non-zero compressibility in insulating regions of our system may
provide the “smoking gun” for Bose glass formation. Direct observation of
compressibility through local number fluctuations [76] would be extremely dif-
ficult in our system, even provided an available in-situ imaging capability with
resolution on the order of ∼ 1 µm, due to a line-of-sight interrogation through
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many planes of our overall 3D system. Some information may be gained how-
ever through measuring the overall response to trap compression [266].
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Chapter 10

Probing an ultracold-atom
crystal with matter waves

In this chapter, we report on the experimental study of the Bragg scattering of
delocalized matter-waves from an ultracold atomic crystal, in which scattering
centers are formed by lattice-trapped neutral atoms. In recent years, atomic
quantum gases in optical lattices have served as a versatile testbed for impor-
tant concepts of modern condensed-matter physics. The availability of meth-
ods to characterize strongly correlated phases is crucial for the study of these
systems. Diffraction techniques to reveal long-range spatial structure, which
may complement in situ detection methods, have been largely unexplored.
Here we experimentally demonstrate that Bragg diffraction of neutral atoms
can be used for this purpose. Using a one-dimensional Bose gas as a source of
matter waves, we are able to infer the spatial ordering and on-site localization
of atoms confined to an optical lattice. We also study the suppression of inelas-
tic scattering between incident matter waves and the lattice-trapped atoms,
occurring for increased lattice depth. Furthermore, we use atomic de Broglie
waves to detect forced antiferromagnetic ordering in an atomic spin mixture,
demonstrating the suitability of our method for the non-destructive detection
of spin-ordered phases in strongly correlated atomic gases. In implementing
the matter-wave crystallography of lattice-trapped gases, we make use of two
techniques that are compared and contrasted in this chapter. This chapter
is partially based on our publication Probing an Ultracold-Atom Crystal with
Matter Waves, Nature Phys. 8, 544–549 (2012) [49].
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10.1 Introductory discussion

The diffraction of electron and neutron matter waves from crystalline struc-
tures is a standard tool in crystallography, complementing x-ray techniques [106].
The advent of quantum gases in optical lattices has introduced a new class of
highly controllable systems that mimic the physics of solids at lattice constants
that are three orders of magnitude larger [26], and it appears natural to ask
about a possible role for atomic matter-wave diffraction in the characterization
of these systems [80, 270].

Several approaches for detecting the spatial structure of strongly corre-
lated phases of ultracold atoms in optical lattices have so far been taken.
These include the analysis of noise correlations in momentum space [190, 191],
accessible after release of the atoms from the lattice, as well as dedicated
in situ detection methods based on optical imaging [76–78] and electron mi-
croscopy [79]. In this context, diffraction experiments have the potential to
reveal important information on the existence of long-range order, such as
spin-ordered phases in atomic mixtures [235, 271, 272], in a non-destructive
manner and with substantially lower experimental requirements. Here, optical
and atomic matter-wave diffraction are equivalent in the sense that scattering
of photons and atoms can be sensitive to both the external and internal state of
atomic scatterers. However, there are certain advantages to using matter-wave
probes. The de Broglie wavelength of an atomic probe can be tuned freely by
controlling its velocity, thus precluding limits on spatial resolution and also
providing access to Bragg resonances without the need of varying the angle
of incidence. As in the optical case [192, 273], matter-wave probes of high
spectral brightness are readily available by using atoms from a Bose–Einstein
condensate.

In this work we study the scattering of a probe species, consisting of one-
dimensional Bose gases, from target atoms confined to an optical lattice. For
weak confinement, we observe free-particle-like, one-dimensional (1D) colli-
sions [195, 274] between the two species, corresponding to inelastic band-
structure excitations of the target by the incident probe field. The inelastic
scattering is suppressed for more deeply confined target atoms, giving way
to elastic scattering and Bragg diffraction, from which the underlying crys-
talline order can be inferred. We use this matter-wave scattering technique to
characterize the introduction of forced antiferromagnetic ordering [52] in the
system.
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10.2 Matter-wave probing of an atomic crys-

tal

Our experiments begin with a virtually pure Bose–Einstein condensate of 87Rb
atoms in the |F,mF 〉 = |1,−1〉 hyperfine ground state, prepared in an optical
dipole trap (ODT) of nearly isotropic harmonic trapping frequency 2π×50 Hz
in the transverse (x and y) and vertical (z) directions. Along the transverse
axes, far-detuned attractive optical lattices (λ⊥ = 1064 nm) are smoothly
ramped up in 200 ms via partial retroreflection of the ODT’s laser beams [111],
resulting in an array of one-dimensional Bose gases, with trapping frequency
ωz/2π ≈ 70 Hz along z. The final depths of these transverse lattices, s⊥ = 40
(measured in units of the transverse recoil energy (h/λ⊥)2/2m, where m is the
atomic mass), are sufficiently deep so as to suppress tunneling between the 1D
tubes on our experimental timescales. Moreover, given a transverse oscillation
frequency in each tube of ω⊥/2π = 26 kHz (in the harmonic approximation),
and a corresponding energy spacing to the first allowed transverse excited
mode of 2~ω⊥ ≈ 14 ER, all dynamics are energetically restricted to the lowest
mode. For all the studies that follow, in the absence of additional lattice
potentials along z, the 1D bosons are not deeply within the Tonks–Girardeau
regime [199], and can be characterized by a Lieb–Liniger parameter value
γ . 1 [197, 202].

After forming the array of 1D tubes, we next create a mixture of probe
(|p〉 ≡ |2,−2〉) and target (|t〉 ≡ |1, 0〉 or |1,−1〉, see below) species through
manipulation of the atoms’ internal hyperfine state via microwave Rabi pulses
and Landau–Zener sweeps at a magnetic bias field of 1.7 G. By adiabatically
ramping up a magnetic field gradient, we then fully separate the probe and
target atoms along the longitudinal (z) axis. We thereafter smoothly ramp up
a state-selective lattice along z, formed by light of wavelength λz = 785 nm,
between the D1 and D2 lines of 87Rb. This allows ([44, 219, 248]; for more
details see the end of the chapter) for a cancellation of light-shifts (and zero
lattice depth) for the probe atoms, while the target atoms experience an at-
tractive lattice along z, with period d = λz/2 and variable depth sz (measured
in units of the longitudinal recoil energy ER = (h/λz)

2/2m). This allows for
the target to be driven to a 1D Mott insulator state [185], while the probe
species remains a superfluid 1D Bose gas. Finally, as detailed below, we ex-
amine scattering processes between probe and target at a well-defined relative
velocity, vrel, relating to a probe de Broglie wavelength of ΛdB = h/mvrel.
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10.3 1D collisions and inelastic scattering

We begin by studying collisions between the two species, as the target atoms
become localized to a state-selective lattice of increasing depth. In the limit of
zero lattice confinement along z, the collisions occurring between the |p〉 and
|t〉 atoms are essentially free-particle collisions, with all scattering restricted
to the 1D tubes. Such binary collisions have previously been studied with a
single species as a quantum analog of a “Newton’s cradle” [274], and with a
two-species mixture in the context of damped spin impurity transport [275].
Here, we realize such collisions by accelerating the probe atoms into an initially
separated sample of target atoms, which is itself at rest.

As illustrated in Fig. 10.1 (a), we set the relative velocity of the collisions
by controlling the magnetic field gradient along z that initially separates the
two species. The probe atoms experience a longitudinal trapping potential
shifted by a distance ∆z, while the target atoms (|F,mF 〉 = |1, 0〉, insensitive
to the applied gradient) remain at the trap center. The magnetic field gradient
is quickly extinguished, and after a quarter oscillation in the trap the probe
atoms have accelerated to a nominal velocity of v0

p ≡ ωz∆z upon interacting
with the stationary (v0

t = 0) target atoms. At this point, we access their
momentum distributions by turning off all confining potentials and separating
them by applying a pulsed magnetic field gradient during time of flight (TOF),
followed by absorption imaging.

Typical TOF absorption images are displayed in Fig. 10.1 (b), for the case
of free (along z) target atoms and probe atoms incident at vrel = v0

p−v0
t = 2vR

(z-lattice recoil velocity vR = h/2md ' 5.8 mm/s). Here, and also for weak
z-lattice depths, two distinct velocity components at 0 and vrel can be seen
for both species. As the target atoms are initially at rest and the accelerated
probe atoms are initially at vrel before colliding with each other, the scattering
spectra show energy- and momentum exchanging binary collisions between
probe and target atoms, i.e. reflections in the center-of-mass frame of atomic
pairs. Whereas reflection and transmission events are indistinguishable for
colliding atoms of the same spin [274], a spin-mixture gives experimental access
to the reflection probability [195]. The atoms collide with a high kinetic energy
that far exceeds the mean-field energy of either species, such that the collisions
have free-particle character. Using a slightly uneven mixture of the two species
(3:2 target to probe atoms), we find that 11 ± 1% of the target atoms and
14±3% of the probe atoms are reflected, in fair agreement with the calculated
reflection probability of R = 10% [195] for our system parameters. Here, we
have taken

R ≈ 1− |1− 1/(1 + ikCOMz a1D)|2 , (10.1)
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Figure 10.1: Interspecies collisions of one-dimensional bosons. (a) To study
collisions between two bosonic species in one-dimensional systems, probe (|p〉)
atoms of one species are displaced (by distance ∆z) and then accelerated
within a trap potential (trap frequency ωz) to a final velocity v0

p = ωz∆z.
The |p〉 atoms then interact with the stationary target (|t〉) atoms at the trap
center. (b) Absorption images showing Stern–Gerlach separated TOF spectra
for the target (top) and probe (bottom), with velocity components at vp,t = 0
and 2vR, due to momentum-exchanging “Newton’s cradle” (NC) collisions.
(c) Illustration of momentum and energy exchange in the band structure of
the optical lattice, shown for a lattice depth sz = 8 (in units of the recoil energy
ER). (d) Percentage of target atoms that participate in NC-type collisions,
as a function of the energy mismatch δE. The solid curve is an exponential
fit with a decay constant of 0.35 ER. The percentage is determined from the
peak asymmetry in the TOF velocity distribution (after summation over the y
direction) of the target species, as shown for v0

p = 2vR in the inset, with atom
numbers N t

±2 (peaks) and N t
TOT (total).

where the center-of-mass wavevector of the colliding particles is given by
kCOMz = (vrel/2vR)π/d = π/d, and the effective 1D scattering scattering length
is

a1D = −a
2
⊥

2a

[
1− C a

a⊥

]
, (10.2)

with constant C ≈ 1.4603 and harmonic oscillator length, sometimes also
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written as σ⊥, a⊥ = λ⊥s
−1/4
⊥ /2π ≈ 67 nm in the harmonic approximation for

s⊥ = 40. As an aside, we mention that such probabilistic free-particle collisions
between 1D bosons may find future use in generating atomic distributions
with nonclassical correlations [276], much as in atomic four-wave mixing [219].
Indeed, population transferred to the unseeded modes via pairwise momentum-
exchange should display properties akin to two-mode squeezed vacuum [277],
and moreover these collisions can create atomic beams with non-separable
spin-correlations [278].

As mentioned above, much effort has been devoted to studying collisions
of lattice-free 1D Bose gases, both for the spin-polarized [274] and spin-mixed
cases [275]. In our system, we now investigate what happens when the dis-
persion relations are qualitatively different, with one of the species subject to
a longitudinal optical lattice. To discuss in simple terms our expectations for
the case that the target atoms reside in a lattice of finite depth, we describe
the momentum and energy exchange in the periodic zone scheme associated
with the lattice. For zero lattice depth, the dispersion relations of target and
probe atoms coincide, such that the momentum exchange is resonant. How-
ever, as illustrated in Fig. 10.1 (c), for non-zero lattice depth sz 6= 0, each
collision demotes an incident probe atom from the first band to the ground
band, and vice versa for the target atom involved in the collision. With an
energy mismatch δE that increases with sz, the momentum-exchange becomes
off-resonant, amounting to an inelastic band-structure excitation of the tar-
get. This process can occur as long as the energetic uncertainty ∆E ∼ h/τ
associated with the finite interaction time τ is larger than δE.

The observed changes of the target’s TOF spectra with increasing lattice
depth are analyzed in Fig. 10.1 (d). In the absence of collisions, sz-dependent,
symmetric peaks due to optical diffraction are observed at vt = ±2vR as ex-
pected (for up to sz ∼ 20). Collisions at the incident velocity v0

p = 2vR give
rise to an asymmetry between the two peaks, depending on the depth of the
lattice. The observed asymmetry decays with the mismatch δE, in qualita-
tive agreement with our expectation. We estimate the time for probe atoms
to traverse half of the target (at which point we switch off the lattice) to be
τ ∼ 10µm/2vR ' 0.9ms, giving an associated energy uncertainty ∆E ∼ 0.3ER.
This value is in good qualitative agreement with the observed 1/e exponen-
tial decay constant of 0.35ER. Our observation of the suppression of elastic
two-body collisions due to band-structure mismatch should be of direct con-
sequence for recently proposed thermometry schemes in strongly correlated
systems that are based upon the use of a lattice-free spectator species in con-
tact with lattice-modulated atoms [238].
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10.4 Elastic Bragg diffraction of matter waves

While inelastic scattering events are seen to die off with increasing lattice con-
finement, we instead can expect to observe elastic scattering of probe matter
waves from the crystal of target atoms. The distribution of elastically scat-
tered probe atoms is determined by the static structure factor S(q) of the
target (where ~q is the probe momentum transfer). As S(q) is given by the
square of the Fourier transform of the target’s density, probe scattering can
thus reveal information about the underlying spatial distribution of the target
atoms. As a caveat, we briefly mention that the study of the dynamic struc-
ture factor through low-energy inelastic scattering, which could provide insight
into correlations of the target atom array [80], is largely precluded in our sys-
tem due to dominant reflection at low energies (described below), as well as
our use of a superfluid probe gas, which itself supports low-energy collective
excitations. Such a study may thus be more well-suited to energy-deposition
measurements based on optical Bragg spectroscopy [216, 217].

The static structure factor, for a deeply modulated target, can be approx-
imated as S(q) = |

∑
j fj(q)e

iqzj |2 , where the fj(q) are the amplitudes of iso-
lated scatterers at positions zj = jd, with j an integer. If one assumes them to
be identical (fj(q) ≡ f(q)), as in a Mott phase with uniform filling, the struc-

ture factor is a product of two terms, |
∑

j e
iqzj |2 and |f(q)|2 = |〈ϕ0 |eiqz|ϕ0〉|

2
,

where ϕ0(z) describes the on-site density distribution of each scatterer. The
first term determines the positions of Bragg diffraction resonances, and re-
veals the periodicity of the array of scatterers. The second term, the atomic
form factor |f(q)|2 (or equivalently the single-scatterer or Fraunhofer envelope
function) reveals information of the on-site density distribution.

In order to perform crystallographic measurements, we begin by introduc-
ing a controlled method to vary the relative velocity (de Broglie wavelength) of
matter waves incident on a deeply-confined crystal. Such a wavelength scan is
necessary to identify Bragg diffraction resonances, which are expected when a
multiple of the probe’s de Broglie wavelength coincides with the target’s lattice
spacing (i.e. 2d = nΛdB, or vrel = nvR, with n the order of diffraction), and
more generally it allows study of the dependence of scattering on the probe’s
de Broglie wavelength. As illustrated in Fig. 10.2 (a), the target atoms (here
in the |1,−1〉 state) are loaded into a very deep state-selective lattice initially
at rest in the lab frame. This lattice is then made to move at a well-defined
velocity vL = δω(λz/4π) by detuning the relative frequency of the two in-
terfering laser beams that create the lattice by an amount δω. The pinned
target atoms, which are initially far-separated from the probe atoms, follow
the moving lattice minima at a variable velocity vrel for a total time Tmove, in-
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Figure 10.2: Diffraction from a moving atomic crystal. (a) Target (|t〉) atoms,
strongly confined to a state-selective lattice, move towards a stationary cloud
of probe (|p〉) atoms at a velocity vL = δω × (λ/4π), by frequency detuning
(by δω) the two lattice beams. (b) Absorption images show the |t〉 and |p〉
species after interaction and expansion in TOF.

cluding a set delay time before the probe and target make contact. The large
initial separation helps to avoid the formation of a quantum emulsion [47],
resulting when homogeneous mixtures are loaded into state-dependent lattice
potentials, which can affect interspecies transport properties [44, 46].

In Fig. 10.2 (b), we show TOF absorption images of both species following
interaction, taken for the case of deep confinement (sz = 50) and a velocity
vrel = 2vR. The target’s velocity distribution is very broad, as expected for a
deep 1D Mott state, and is centered around the velocity of the moving lattice
(−2vR). The velocity distribution of the probe, initially centered around vp =
0, displays a peak of atoms transferred to −4vR. A series of such scattering
spectra (integrated along the transverse y axis) is shown in Fig. 10.3 (a),
for a range of relative velocities vrel. For each velocity, the time Tmove is
chosen so that the target crystal enters the probe and then moves for 1.4 ms
(kept much less than the trap period Tz = 2π/ωz ∼ 14 ms to avoid the
dispersion of out-coupled atoms to different velocities due to propagation in
the trapping potential). From the scattered probe spectra as in Fig. 10.2 (b)
we observe that, in addition to the line of “transmitted” atoms at vp = 0,
some probe atoms are out-coupled (i.e. reflected) due to the target crystal.
The reflection of probe atoms comes from two apparent elastic mechanisms -
specular reflection and resonant Bragg diffraction. We note that both of these
mechanisms are to be distinguished from observations of free-space four-wave
mixing in two-component mixtures [219, 238], which does not persist when
one species loses matter-wave coherence.

The specular contribution is due to the reflection of probe atoms from the
potential “step” of the target crystal (energy mismatch outside and inside the
crystal). This reflection is dominant at low velocities and gives way to trans-
mission at larger probe velocities (kinetic energies), where the band structure
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Figure 10.3: Probe scattering from a moving crystalline target. (a) Probe TOF
spectra after interaction with a target at sz = 50, at varied relative velocity
vrel. Each horizontal line is obtained from a yz spectrum as in Fig. 10.2 (b) by
integrating along y and normalizing to the total |p〉 atom number. The solid
white lines near vrel/vR ∼ 2 illustrate the slope of the clearly visible second-
order Bragg resonance, i.e. extrapolations of a linear fit to the positions of
maximum out-coupling for 1.8 . vrel/vR . 2.2. (b) Dependence of reflection
from the crystal on vrel. We count the number of atoms scattered to vp ∼
−2vrel, i.e. within dashed lines of Fig. 10.3 (a). Bragg resonances of the |t〉
crystal are observed for vrel/vR = 1, 2, 3, on top of a background contribution
due to specular reflection, which decays with increasing vrel. (c) Reflected
probe population as a function of the time during which the crystal is moved
(Tmove), for fixed velocities vrel/vR = 1.5 (black data) and vrel/vR = 2 (red
data). The data fall off at long times due to the evolution in the trapping
potential.

of the target “atomic crystal” is free-particle-like. The specular contribution
leads to the transfer of probe atoms to vp = −2vrel and shows no resonant
structure. In contrast, Bragg reflection from scattering centers of the target
crystal occurs at values vrel/vR = n and results in the transfer of probe atoms
to velocities vp = −vrel − nvR. Such a “locking” to a Bragg resonance is
observable through a change in the slope of the out-coupled branch of probe
atoms. Results of the velocity scan, which displays these features, are shown
in Fig. 10.3 (a).

In Fig. 10.3 (b) we count the number of probe atoms out-coupled to vp ≈
2vrel, and plot it as a function of vrel/vR. Three resonant peaks in the number
of reflected atoms are observed for vrel/vR = 1, 2, 3, corresponding to first-,
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second-, and third-order Bragg processes. In addition to these resonances, a
significant non-resonant contribution due to specular reflection is observed,
which as expected decays with increasing velocity vrel. We fit the second-
order resonance peak with a Gaussian on top of a linear slope [red line in
Fig. 10.3 (b)], and extract a 1/

√
e-width of 2σv = 0.3vR, reflecting the in-

trap velocity width of the probe species. The width is a factor of two smaller
than the directly observed TOF velocity width of the probe atoms [279], likely
owing to effects of interaction-induced expansion during TOF [131].

Using our ability to vary the total time Tmove that the target crystal
moves at constant velocity, we can also study the temporal buildup of the
out-coupled probe population. In contrast to optical scattering, this may
in the future be used to provide “line-of-sight” information in matter-wave
scattering experiments. In Fig. 10.3 (c), we plot the temporal buildup of
probe population to vp ∼ −2vrel, for the cases vrel = 1.5vR and 2vR. The
difference between incoherent (specular reflection) and coherent (Bragg) pro-
cesses should lead to differences in the growth behavior. Indeed, there are
some indications of a more nonlinear initial growth for vrel = 2vR than for
vrel = 1.5vR case. However, since the relatively short coherence length of the
probe [L ∼ ~/(mσv) = 0.8 µm] precludes a fully coherent temporal evolution,
the observed growth will be mostly determined by the time-dependent overlap
of the inhomogeneous profiles of the probe and target.

Finally, we recall the dependence of the static structure factor S(q) on the
atomic form factor |f(q)|2, in relation to the three Bragg resonances observed
in Fig. 10.3 (b). In the harmonic approximation, the form factor is propor-
tional to exp(−q2σ2

z/2), where σz is the harmonic-oscillator length character-
izing the extent of the atomic distribution on each site. While the third-order
peak (q = 3) is smaller than the second-order peak (q = 2), the expected
momentum dependence is partially masked, owing to a fixed probe-target in-
teraction time that results in the probe atoms of lower velocity (such as for the
first-order peak) interacting with fewer scattering centers of the target crys-
tal. However, we can directly probe the contribution from the atomic form
factor, which can be seen to be formally identical to the Debye–Waller factor
W = exp(−q2〈u2〉/2) describing the reduction of elastic scattering due to po-
sition fluctuations 〈u2〉 of scatterers in an ionic crystal [106]. The larger σz,
the smaller |f(q)|2, in analogy to the decrease of the Debye–Waller factor with
temperature. We point out, however, that in our case these fluctuations are
not thermal but arise from zero-point motion, and may be tuned through σz
by varying sz.

To extract the sz dependent amount of elastic Bragg diffraction, we recall
the experimental situation of Fig. 10.1, where the earlier described method
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Figure 10.4: Scattering profiles as a function of target confinement. (a,b) In-
tegrated TOF spectra of the |p〉 and |t〉 species, following collisions of incident
probe atoms (at velocity vrel/vR = 2) from a stationary target of atoms con-
fined to a lattice of varied depth sz. With increasing depth, we observe the
decay of pairwise momentum-exchanging collisions as studied in Fig. 10.1,
which lead to the initial asymmetry in target population of the ±2vR diffrac-
tion peaks, as well as stationary probe atoms at vp = 0. Accompanying this
decay of energy-changing collisions is the appearance of an elastic Bragg re-
flection peak of probe atoms at vp/vR = −2.

of probe acceleration in the longitudinal trapping potential (with |1, 0〉 target
atoms) was employed. For a complete picture of probe-target scattering events
in the crossover from localized-to-delocalized target atoms, we plot in Fig. 10.4
the integrated 1D scattering profiles of both species as a function of sz. At
very low depths, profiles consistent with Fig. 10.1 (b) are observed, owing
to (nearly-)free-particle momentum- and energy-exchanging collisions between
|p〉 and |t〉 atoms. As these collisional events cease to occur, as seen in both
the peak of probe population at vp = 0 and the asymmetry of the vt/vR = ±2
target peaks, a probe feature at vp = −vrel = −2vR becomes visible. This peak
can be attributed to elastic second-order Bragg diffraction, and in Fig. 10.5 (a)
we plot the percentage of diffracted atoms as a function of sz. The percentage
of second-order Bragg-reflected probe atoms Ndiff is determined from a fit of
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the TOF spectrum with Gaussian peaks for (i) the transmitted probe around
vp ≈ v0

p ; (ii) a broad incoherent background centered at vp = 0 ; (iii) Bragg-
reflected atoms at vp = −2vR. Ndiff is determined as the amount of Bragg-
reflected atoms normalized with respect to the total probe population.

The data in Fig. 10.5 (a) reveal an increase of diffraction efficiency as the
target atoms become more localized, and we find the data to be in good quali-
tative agreement with the calculated dependence of |f(q)|2 on sz (using Bloch
wavefunctions, taken over a single site, for ϕ0). We show cartoon depictions
in Fig. 10.5 (b,c) of the atomic wavefunctions and the Fraunhofer diffraction
envelope. While there is good general agreement, the observed signal saturates
at large sz while the expected curve does not, and a better agreement with
the data can be obtained by taking into account sz-dependent heating due
to Rayleigh scattering from the laser beams forming the longitudinal lattice.
We attribute this mostly to heating of the probe species, leading to reduced
coherence and an increased spectral width, and thus less population at the
velocity class that matches the Bragg resonance condition. Indeed, if for a
fixed lattice depth of sz = 25.5 we hold the species for a variable time prior
to probe acceleration to v0

p = 2vR, we observe such heating through a linear
increase in the probe’s TOF velocity-width, as seen in Fig. 10.5 (d). The en-
suing Bragg diffraction signal exhibits a roughly exponential decay with hold
time (1/e–time theat ∼ 150 − 200 ms), slightly faster than what we should
expect due to probe heating alone - i.e. expecting a 1/σv(t) decay, with time-
dependent spectral width σv(t). Assuming that all contributions from heating
due to Rayleigh scattering (of either |p〉 or |t〉 atoms) should scale as the time
integral over the lattice depth, we expect a correction factor of exp(−0.01sz)
to modify the form factor. A fit to the data with |f(q)|2 × exp(βsz) yields
β = −0.015 [value used for the dashed curve in Fig. 10.5 (a)], consistent with
the expected role of such heating.

10.5 Bragg diffraction spectra using acceler-

ated probes

We now make a qualitative comparison between the spectrally well-resolved
method of moving a crystal through a stationary probe, and the method of
accelerating a displaced probe cloud into a stationary target crystal, at a
relatively well-defined final velocity vp throughout the time of probe-target
interaction. In Fig. 10.6 (a), we show a relative velocity scan similar to that of
Fig. 10.3 (a), however here the velocity is controlled by the initial displacement,
∆z, of the probe species in the external trapping potential. We have here used

132



0 3010

N
d

iff
 [%

]

6

4

2

0

sz 
20

(a)

qpd/� + 2 
-1                0                 1

z / d
-5         0          5

1

0

1

0|
φ

0
| 

[a
rb

. 
u

.]
2 σz(b) (c)

0 .2 .4 .6

5

0

1.0

0.5

0.0

N
d

iff
 [%

]

THold [s]
0 .2 .4 .6

THold [s]

σ v
 / 

v R
(d) (e)

Figure 10.5: Measuring the on-site density profiles of atomic scattering centers.
(a) Percentage of (second-order) Bragg-diffracted probe atoms as a function of
sz. The dashed curve is proportional to the form factor |f(2× 2π/d)|2 calcu-
lated as a function of sz; the solid curve accounts for additional heating effects
as described in the text. The black square is a reference measurement without
|t〉 atoms. (b) Plot of the modulated wavefunction of an array of target atoms
in a lattice, with the extent on each site characterized by a harmonic-oscillator
length σz. (c) Cartoon depiction of the Bragg reflection efficiency, as governed
by the atomic form factor |f(q)|2 (i.e. the Fraunhofer envelope of individ-
ual target scatterers, or quantum-limited Debye–Waller factor W ). With ~qp
referring to the momentum change of probe atoms after scattering from the
target crystal, the Fraunhofer envelope of allowed probe momentum change is
approximated by e−q

2
pσ

2
z/2, determining the percentage of probe atoms that are

reflected. (d) Dependence of the percentage of probe atoms, Ndiff undergo-
ing second-order Bragg diffraction, on the hold time prior to acceleration and
target interrogation, THold. The red line is a fit exponential decay, with a 1/e
time constant of 185 ms. (e) Spectral width σv of the probe component, based
on a fit to the transmitted peak, as a function of the THold.
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Figure 10.6: Scattering of an accelerated probe from a stationary crystal.
(a) Probe TOF spectra from a crystal of atoms localized to a lattice of depth
sz = 25.5. The inset shows the second-order Bragg resonance (within the
dashed line) with color enhanced. (b) Plots of integrated probe spectra, at
vrel/vR ' 1, 2, 3. The arrow indicates the expected position of the first-order
Bragg peak; Gaussian fits to the second- and third-order Bragg peaks are
highlighted in red.

a crystal of target atoms that are slowly loaded into a state-selective optical
lattice of depth sz = 25.5. Broadly speaking, the two methods produce quite
similar results, with similar observations of first-, second-, and third-order
Bragg reflection peaks as shown in Fig. 10.6 (b). We note that the second-order
Bragg reflection peak in Fig. 10.6 (a) is fixed at vp/vR = −2, as the Bragg
condition is defined in the reference frame of the stationary target crystal.
This difference in slope from the specular contribution is exactly related to
the observed Bragg peak’s slope in Fig. 10.3 (a), although in the case of a
moving crystal the reference frame in fact changes with vrel.

However, the method of using a moving target crystal, at an extremely well-
defined velocity throughout the time of interaction, allows for a less ambiguous
observation many of the features, especially at low impact velocities. This is
owing to the methodology for achieving the relative probe-target velocity. At
low vrel, the method of probe acceleration begins with small displacements ∆z.
In fact, the separation between the center-of-mass positions of the two species
can in general be less than their combined extents, i.e. the two species should
overlap at the outer edges of their distributions up to a value of vrel/vR ∼ 1.2,
in the central-most 1D “tubes”. As the two clouds are strongly-interacting, we
should expect in general a significant deviation from the expected distributions
based on the single-component scenario, with the likelihood of full phase-
separation at low temperatures, even for very weak applied gradients [280].
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Even without such deviations from the non-interacting case, the fact that the
probe species is not at a fixed velocity, but is rather accelerating towards the
trap minimum, will ensure that during the time of probe-target interaction a
range of vrel will be experienced. This issue is most severe at small vrel, as both
the absolute and relative (as a fraction of vrel) range of velocities occurring
throughout probe-target overlap decrease as a function of vrel. We expect that
these such effects, as well as possible interspecies instabilities [281] and effects
of dispersion in the trap, may contribute to the obscuration and ambiguity of
the first-order Bragg reflection peak in Fig. 10.6 (b). By dispersion effects, we
mean the fact that specularly reflected atoms will experience a loss of energy
and decrease in velocity they travel back up the dipole trap “hill”, in the short
time between reflection and release for TOF imaging. As discussed briefly
earlier, the fact that the probe species is weakly-trapped not only leads to
an increased spectral width, but limits the useful timescale of probe-target
interaction [cf. Fig. 10.3 (c)].

Finally, there is one last effect that can occur when the two species are
overlapped prior to loading of the state-selective lattice. This is the possi-
bility that a quantum emulsion, as studied in the previous chapter and in
Refs. [44, 46, 47, 70]), can be formed during the loading process. In the follow-
ing section, we study low-energy scattering between probe and target atoms,
with an emphasis on the transport of 1D probe gases through a crystal of
target atoms, or in the reference frame of the gas, the dragging of impurities
through 1D Bose gases.

10.6 Low energy scattering of free and trapped

1D bosons

We now turn our attention directly to the case of small values of vrel/vR (for ac-
celerated probe atoms), depicted again in the top row of Fig. 10.7 (a). Naively,
apart from the transmitted probe, one would expect to simply see a first-order
Bragg peak around vrel/vR = 1. As mentioned earlier, a broad distribution of
outgoing probe velocities with |vp| ≤ vrel is seen instead, obscuring the peak
(see also Fig. 10.6 (b), top row). In this context, it is important to recall
that vrel = ωz∆z is controlled by varying the initial probe displacement ∆z.
For small displacements with vrel/vR ≤ 1.2, the target and probe never fully
separate, encompassing most of the range of the expected Bragg resonance. It
seems likely that the overlap contributes to the blurring of the distribution.
In the following, we analyze these effects more closely.

In the range vrel/vR . 0.5, most of the |p〉 atoms remain near zero velocity,
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Figure 10.7: Low velocity impurity transport. (a) Probe |p〉 and target |t〉 ve-
locity distributions for four values of sz; for comparison the data of Fig. 10.6 (a)
is partially reproduced. (b) Inhibition of probe transport due to interactions
with the target. For low velocities (vrel < 0.5) we fit a straight line [solid black
lines in (a)] with slope α to the probe distribution’s peak locations (the peak
for a given vrel is defined as the region around the maximum that comprises
all points down to 50%; its location is then determined from a Gaussian fit).
The error bars indicate the linear regression standard error of the fit.

despite the force exerted on them by the harmonic potential after switching off
the gradient. In order to study this effect further, we take displacement scans
at different target lattice depths sz as shown in Fig. 10.7 (a). For vrel/vR . 0.5,
we observe that the peak of the |p〉 distribution is at velocities that linearly
scale as vmax

p /vrel = α < 1. In the range considered (sz ≤ 6), the coefficient α
decreases smoothly with sz, as seen in Fig. 10.7 (b) (a reference run without
|t〉 atoms at sz = 25.5 yields α = 1.0± 0.1 as expected). Without attempting
to quantitatively model this behavior, we note that in this range the depth
of the effective atomic lattice increases nearly linearly with sz, surpassing the
probe’s chemical potential µ ' 0.4 ER at sz = 3. By atomic lattice we refer to
the modulated potential landscape acting on the probe atoms due to repulsive
interactions with the localized target atoms, with modulation depth given by
Vtp = 〈n〉gtp|ϕ⊥(0)|4(|ϕz(0)|2 − |ϕz(d/2)|2) [238]. Here, gtp = 4π~2atp/m is the
3D probe-target coupling strength with probe-target s-wave scattering length
atp, and ϕz(z), ϕ⊥(x, y) are the target’s Bloch wave functions (lowest band
at q = 0), and 〈n〉 the mean site occupancy. This modulation is appreciable
already at sz = 3, Vtp/〈n〉 ' 0.5 ER, growing only modestly to Vtp/〈n〉 '
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1.4 ER at sz = 25.5. For our experimental parameters, we expect 〈n〉 = 1.7
for the site occupancy in the center of the target.

We expect that the observed inhibition of transport for increasing sz is
likely the result of the increasing atomic lattice, with the possibility of added
localization due to the formation of a quantum emulsion in the overlap re-
gion [44, 46, 47, 70]. Similar observations of greatly inhibited transport in
one-dimensional Bose gases have also been made in purely corrugated optical
potentials [31, 214]. At sz = 0, for which the target is a superfluid 1D Bose gas
just as the probe, the maximum of the probe distribution suffers appreciable
retardation (α ' 0.75), with momentum transfer to the |t〉 atoms (as seen in a
corresponding shift of the center of mass). The slowdown of |p〉 atoms entering
the target volume can be viewed as resulting from an increase in mean-field
energy (i.e. with the target atoms acting as a repulsive potential “hill”), which
can be expressed as a change of the refractive index for matter waves similar
to the case of photons [133]. We note that this mean-field “slow-down” effect
can also be observed (to a small extent) in the position of the transmitted
probe peak at vp/vR ∼ 2 in Fig. 10.4 (a). As the lattice depth sz is increased,
the induced “slow-down” in Fig. 10.4 (a) is seen to disappear.

Over the larger range of velocities considered in Fig. 10.7 (a), we observe
a broad distribution of |p〉 atoms that is centered at negative velocities and
bounded by retroreflection vp/vrel = −1. The observed broadening of the |p〉
spectra is consistent with the expected presence of dissipation for velocities
near the speed of sound c̃s = (

√
µ/m)/vR ' 0.4 [282]. The presence of

backscattered atoms (i.e. atoms with vp/vR < 0) does not depend much
on the degree to which the |t〉 atoms are localized, but persists to low sz.
Remarkably, the velocity spectrum of the target does not contain atoms at the
corresponding momentum change (which would violate energy conservation).
This means that the momentum of the backscattered |p〉 atoms is collectively
transferred to the optical lattice rather than to single |t〉 atoms, similar to the
Mössbauer effect. An intuitive explanation for this surprising effect is that
the backscattering originates from the target’s density modulation, which is
not free to move around but is spatially locked to the optical lattice potential.
Indeed, when no lattice is present (sz = 0), the probe spectrum does not
contain atoms at negative velocities. In this case, it is bounded at vrel while
the target spectrum contains atoms with velocities up to vt = vrel, indicating
the presence of energy- and momentum exchanging binary collisions between
|p〉 and |t〉 atoms, as studied earlier.
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Figure 10.8: Low velocity impurity transport as observed in-situ. (a) Typical
in-situ absorption image of an array of 1D Bose gases, oriented along z. (b) By
taking images at different times after an abrupt displacement of the trap-
center, dipole oscillations or “sloshing” of the center-of-mass displacement ∆z
can be observed for a gas of |p〉 atoms. With the addition of impurity |t〉
atoms, which are confined to a very deep state-selective lattice, we find a
strong damping of the |p〉 species’ dipole oscillations.

10.7 In-situ investigation of low-velocity im-

purity transport

In addition to investigating the influence of localized impurities on transport
in momentum-space, we can also directly monitor the temporal evolution of
the probe in-situ density profiles as the 1D Bose gases come in contact with an
impurity-field. For this, we utilize the in-situ imaging beam path discussed in
Chapter 3, having higher magnification than the TOF imaging path and with
a resolution ∼ 1 µm. A typical in-situ absorption image taken along the axis
x′ = (x+ y)/

√
2 is shown in Fig. 10.8 (a).

We again use a mixture of hyperfine states, here |t〉 = |1,−1〉 and |p〉 =
|2,−2〉, which are confined to an array of 1D tubes (s⊥ = 40), with on average
∼ 80 total atoms per tube. By controlling the fractional amount of the two
species, we can control the concentration of “impurity ” |t〉 atoms within each
tube. The impurity atoms experience a deep, state-selective lattice potential
along z, while the |p〉 experience only the longitudinal trapping potential, with
harmonic frequency ωz/2π ≈ 75−80 Hz. To perform transport measurements,
we begin by applying a relatively strong magnetic field gradient to the atomic
mixture, displacing each of the species from the initial equilibrium trap posi-
tion along z in opposite directions. Next, we first quickly (in 200 µs) ramp
up a state-selective lattice to a depth of sz ∼ 40, and then quickly turn off
the magnetic field gradient. When there are no impurity atoms present, we
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Figure 10.9: Direct in-situ evidence for specular reflection. (a) In the complete
absence of impurities, undamped dipole oscillations of the center-of-mass posi-
tion of the |p〉 species are observed following a trap displacement. After a hold
time of about 6− 7 ms, the atoms have reached the outer turning point of the
oscillation. (b) With added impurity atoms we observe a strong damping of
these oscillations. We also observe evidence of specular reflection, in that the
center-of-mass position reverses course at the impurity-field interface (mean
extent of |t〉 atom distributions shown in blue) instead of reaching the outer
turning point, as highlighted by the arrow.

observe that the |p〉 atomic distribution undergoes center-of-mass dipole os-
cillations following the gradient turn-off, as can be seen in the upper panel of
Fig. 10.8 (b). Separately, we confirm that the |t〉 distribution remains fixed as
a function of hold time, due to the deep lattice confinement.

Finally, we can investigate how the presence of an inhomogeneous impurity-
field influences the dipole oscillation of the |p〉 atoms. For this, we image only
atoms that are in the F = 2 hyperfine state. As shown in Fig. 10.8 (b), for
an increasing amount of impurity atoms (for a few percent and for roughly 25
percent), a strong damping of the center-of-mass oscillations is observed. Due
to the large extent of the atomic distributions as compared to the interspecies
separation, as well as the optical interrogation through a number of 1D systems
along x′, the mechanism for the observed damping is not completely transpar-
ent. We expect that a combination of effects can contribute to the observed
damping, including excitation of the 1D gases and possible localization within
the impurity field [282], as well as an apparent damping of the COM position
due to specular reflection at the interface of the impurity-field distribution. If
the incoming atomic wave-packets split into transmitted and reflected compo-
nents, the center-of-mass position may die off even if no energy is dissipated.
We note that we only consider contributions of specular reflection, and not
coherent Bragg diffraction, as the probe’s maximum center-of-mass velocity is
only ∼ 3mm/s (∼ 0.5 vR).

Indeed, we observe some evidence for specular reflection in the dynamical
evolution of the in-situ probe density profiles. In Fig. 10.9 (a), we plot the
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center-of-mass displacement from the trap center of a cloud of |p〉 atoms, in
the absence of impurities. In Fig. 10.9 (b), we plot again, as the dashed-
line, the expected path of the COM position if there were no impurities. We
also illustrate the position and extent of the impurity-atom distribution, in
light blue. The center-of-mass trajectory of the |p〉 atoms – in addition to
exhibiting a strong damping and slow “creep” into the impurity field at long
times – actually appears to double-back on itself upon reaching the outer edge
of the impurity field, corresponding to specular reflection at the boundary.
These in-situ observations complement the earlier observations of a decaying
(with vrel) specular component to the elastic diffraction signal in Fig. 10.3 (b).
In the future, the engineering of inhomogeneous atomic (or optical [283] for
that matter, e.g. using projected 2D light patterns [77]) potential landscapes
may be used for creating bandgap materials and tunnel junctions [284, 285] or
resonators for propagating matter-waves.

10.8 Detecting forced checkerboard ordering

We now return to the spectrally well-resolved case of a moving target crys-
tal, and we seek to further demonstrate that matter-wave diffraction may be
used to probe non-trivial structure. Here, we show that it gives access to a
clear signature of forced antiferromagnetic, or checkerboard, ordering [52] in
a mixed-spin crystal. As before, we start with a mixture of atoms in one-
dimensional tubes, with a probe that sees no longitudinal lattice along z (|p〉,
here |1, 1〉 atoms, with λz ∼ 788 nm) and “crystal” atoms that are loaded into
and then follow an optical lattice potential. However, instead of using only one
additional species that experiences an attractive lattice along z, our target now
consists of two species. The first one |r〉 ≡ |1,−1〉 again experiences an attrac-
tive lattice potential, whereas for the second species |b〉 ≡ |2,−2〉 the potential
is repulsive. Thus, the |r〉 atoms will be drawn to the intensity maxima, while
the |b〉 atoms will be forced to the minima, as illustrated in Fig. 10.10 (a).
While we keep the total population of these two species fixed, we vary their
relative population, which can be quantified by the net “polarization” of the
crystal P = ∆N/N , with ∆N = Nr −Nb and N = Nr +Nb.

When the target is “spin-polarized” consisting of either all |r〉 or all |b〉
atoms, the situation is as before, with a lattice constant of d = λz/2 ∼ 400 nm.
However, when both species are present, the new dominant length scale, be-
tween atoms of the two species sitting on distinct sets of sites, will be given by
d′ = λz/4 ∼ 200 nm. This may be viewed as a crystal with the original period-
icity and a two-atom basis, or as a new crystal structure having half the lattice
period, given that the interactions of the probe with the |r〉 and |b〉 atoms are
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Figure 10.10: Detecting forced antiferromagnetic ordering via matter-wave
scattering. (a) Calculated dependence of state-dependent optical lattice depth
(in arbitrary units of energy, for σ+ polarization), of the hyperfine states |1,−1〉
(|r〉, red line), |2,−2〉 (|b〉, blue line), and |1, 1〉 (probe atoms, green line). Us-
ing a lattice of wavelength ∼ 788 nm, and for slightly elliptical light, the |1, 1〉
atoms experience a vanishing potential. (b) A stationary cloud of |1, 1〉 atoms
is used as a matter-wave probe for a moving crystal of |r〉 and |b〉 atoms, at-
tracted to and repelled from intensity maxima of a state-dependent lattice,
respectively. (c) Velocity distributions of scattered probe atoms following in-
teraction with a crystal of atoms in a tunable spin-mixture of the |r〉 and |b〉
states, moving at a velocity vrel = −vR. Shown are the cases of spin-polarized
crystals of nearly all |r〉 (P ∼ −1) and |b〉 (P ∼ 1) atoms, as well as for an even
mixture of the two states (P ∼ 0). (d) The number of reflected probe atoms
[shaded regions in (c)], as a function of the spin imbalance of the target crys-
tal, P = ∆N/N . A distinct minimum is observed for P = 0, relating to the
case of a spin-mixed crystal with maximal forced antiferromagnetic ordering
at spacing d′ = λz/4.

approximately the same. This change results in a different diffraction spec-
trum for the matter wave probes. With the addition of a second species, as
scattering centers separated by d give way to those of a smaller spacing d′, the
original first-order diffraction peak at vrel/vR = −1 will become diminished,
and entirely disappear if an equal mixture of the two species uniformly fills the
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lattice, with a new first-order peak now occurring at half the momentum-space
frequency, vrel/vR = −2.

To probe the mixed-spin crystal, we move it at a constant velocity of
vrel/vR = −1 with respect to the probe atoms, for a fixed interaction time
of 1 ms. In Fig. 10.10 (a), we show probe velocity distributions in TOF for
the three cases P ∼ −1, 0, and 1. As can be seen, the number of probe atoms
out-coupled to 2vR is much lower for the spin mixture (P = 0) than for either
of the nearly spin-polarized cases. We note that an appreciable number of
out-coupled atoms appears even for the balanced spin-mixture, which is most
likely due to specular reflection as in the previously studied case, while the
presence of unoccupied sites of either the attractive or repulsive lattices may
also cause some Bragg diffraction consistent with the original lattice spacing.

To characterize how the crystal structure changes as the population imbal-
ance is continuously tuned, we count the number of probe atoms transferred
to a velocity region around vp ∼ 2vR. As a function of the crystal “polar-
ization”, the transferred population shows a distinct minimum near P = 0
for a balanced mixture, as shown in Fig. 10.10 (b). This example readily
demonstrates how matter-wave scattering can be used to detect changes to
the crystal structure of an ultracold lattice gas, and through species-selective
scattering may eventually be used to detect quantum-magnetic spin-ordered
states. Finally, we point out that the full tunability of the wavelength for
atomic matter waves should provide a distinct advantage over optical scatter-
ing in certain circumstances, namely in studying density structures not formed
in optical lattice potentials, such as through self-organization or with mag-
netic trapping potentials. By using probes of small de Broglie wavelength,
this could also include the study of novel quantum states realized at more
easily attainable temperatures in systems with smaller characteristic length
scales. For example, at fixed lattice depth s and fixed tunneling-to-interaction
ratio (t/U)c (e.g., by control of the scattering length as), the Néel temper-
ature TN , marking the onset of antiferromagnetic ordering, scales with lat-
tice wavelength λ as TN ∝ λ−2 [286]. For fixed as and with variable lattice
depth s, an even more favorable scaling is achieved for realistic system pa-
rameters, with TN ∝ λ−3 ln3/2[λ−1

√
2πas(t/U)c] ∼ λ−2.7 for as = 100 a0 and

(t/U)c = 1/32. For a more complete determination of the optimal conditions
for stabilizing a desired quantum phase, entropy considerations and effects of
lattice-cooling [287] should also be taken into account.
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Figure 10.11: Scaling of Néel temperature TN with lattice wavelength, λ, for
fixed interaction-to-tunneling ratio U/t = 32. Shown are the cases of (blue
line) fixed scattering length as = 100 a0 but variable lattice depth s and (red
dashed line) fixed lattice depth s = 13 (in units of ER = h2/2mλ2 but variable
scattering length as). Scalings of TN ∝ λ−2 and (roughly, see text) TN ∝ λ−2.7

are found for the two methods.

10.9 Concluding remarks

In this work, we have demonstrated that matter-wave diffraction can be used
to characterize the crystalline structure of strongly correlated atoms in an
optical lattice. In the future, these techniques may be extended to the char-
acterization of various novel states of ultracold matter, such as charge- and
spin-density waves, magnetically-ordered ground states of quantum gas mix-
tures, and even self-assembled structures such as Tonks–Girardeau gases of
fermionized bosons, Abrikosov vortex lattices [288, 289], and dipolar crys-
tals [290].

10.10 Some experimental details

10.10.1 Hyperfine state mixtures

The initial two-species mixture of probe |p〉 ≡ |2,−2〉 and target |t〉 ≡ |1, 0〉
atoms, used to study in Figs. 10.1, 10.4, 10.5, 10.6 & 10.7 the scattering depen-
dence on sz, contains a total of (1.6±0.2)×105 atoms, with 60% of atoms in the
target state. For this mixture, a final magnetic bias field of 7.4 G is employed
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to suppress |1, 0〉 ↔ |1,±1〉 spin-changing collisions. A second binary mixture
of probe |p〉 ≡ |2,−2〉 and target |t〉 ≡ |1,−1〉 atoms is used in conjunction
with the moving optical lattice [Figs. 10.2 & 10.3]. This mixture contains
a total of (2.8 ± 0.5) × 105 atoms, with 33% target atoms. A three-species
mixture of one probe species (|p〉 ≡ |1, 1〉) and two target species (|2,−2〉 and
|1,−1〉) is used to study forced antiferromagnetic ordering [Fig. 10.10]. This
mixture contains a total of (1.5± 0.2)× 105 atoms, with 50% of the atoms in
the target. The target, consisting of two different species, has a fully tunable
spin composition [c.f. Fig. 10.10 (b)]. The intra- and interspecies scattering
lengths for all the states used are approximately equal to 5.3 nm, i.e. the
background scattering length for 87Rb atoms.

10.10.2 State-selective lattice potential

The state-selective lattices are formed by interfering two laser beams (1/e2

radius ∼ 230 µm , the same polarization) with tunable wavelength between the
87Rb D1 and D2 lines to effect a light-shift cancellation for the probe atoms.
In the case of a stationary target of |1, 0〉 atoms, the lattice is loaded to a
variable depth sz with an s-shaped curve in 75 ms and held for an additional
5 ms prior to acceleration of the probe atoms. This lattice is made from fully
retroreflected laser light of wavelength λ = 785 nm of σ+ polarization. For
the case of a moving target of |1,−1〉 atoms (wavelength and polarization as
in the stationary case), the lattice is first smoothly loaded in 45 ms to a depth
of sz = 10, exceeding the critical depth of the 1D Mott insulator transition,
and then loaded in 5 ms to a depth of sz = 50 to freeze the atoms to the sites
of the lattice. The lattice is then moved, by introducing a relative frequency
detuning of δω between the forward and retroreflected laser beams comprising
the z-lattice, via two acousto-optic modulators driven by phase-locked function
generators.

For the case of a spin-mixed crystal with forced antiferromagnetic ordering,
the two species are quickly loaded into the state-dependent lattice in 2 ms
following creation of the target mixture to avoid spatial separation in a small
magnetic field gradient used to separate the probe. The lattice has modulation
depths sz = 5 and sz = 12, for the |b〉 = |2,−2〉 (repulsive lattice) and |r〉 =
|1,−1〉 (attractive lattice) atoms, respectively. This lattice is formed with light
of wavelength λ ∼ 788 nm, of slightly elliptical polarization. After loading,
this lattice is moved at a fixed velocity as above, with a restriction to relatively
low velocities to ensure that both target species faithfully follow the optical
potential at these modest depths, as observed in the velocity distributions of
the target species.

All the lattice depths are calibrated using Kapitza–Dirac atom diffrac-
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tion [122], with a systematic uncertainty of about 3%. For probe atoms, the
lattice potential is sufficiently “zeroed” even for greatest available optical po-
tentials such that no diffraction is observed for a pulsed-on lattice or for appli-
cation of a linear potential gradient while the lattice is present (i.e. no Bloch
oscillations). To further “zero” the optical lattice, the probe atoms are loaded
into 1D tubes, and we either minimize excitations of probe atoms undergoing
dipole oscillations, or in the case of a moving lattice we move with velocity of
vL = vR, with no observable transfer of probe atoms to non-zero velocities.

145



Chapter 11

Conclusion and outlook

In this thesis, I have detailed several experiments studying the equilibrium and
dynamical properties of ultracold Bose gases in optical and atomic potentials.
We have explored [44] phases of the two-component Bose–Hubbard model,
using a binary mixture in a state-dependent optical lattice that allows for
independent control of the species’ tunneling and on-site interactions. Here,
an apparent loss of spatial coherence of a given species was observed, most
pronounced when the other species was either a delocalized superfluid or was
made up of immobile impurity atoms, consistent with expected formation of
polarons due to superfluid immersion [63] in one case, and of a quantum emul-
sions [47] in the other case. We further studied [46] such quantum emulsions in
a fully one-dimensional geometry, and compared the effects of random (“white
noise”) impurity disorder to the quasi-disorder of a pseudorandom incommen-
surate lattice. In studying the transition from superfluid to an insulating Bose-
glass-like state [28, 48], we found that the loss of superfluid behavior occurred
for a much larger mobility (hopping) in the case of random impurity disorder.
Moreover, we have introduced [49] a new technique for the characterization of
atomic gases in optical lattices, based on the scattering of atomic de Broglie
waves. Through inelastic and elastic scattering, we were able to study ex-
citations and the spatial structure of lattice-modulated one-dimensional Bose
gases, as well as to detect the introduction of forced antiferromagnetic ordering
in an atomic crystal. Lastly, we observed [50] an unusual effect, namely that
disorder can induce transport, when a Bose–Einstein condensate was pulsed by
two incommensurate standing waves, corresponding to a quantum-to-classical
transition in a system of two coupled, kicked quantum rotors [84].

In addition to the topics I have presented in this thesis, several lines of
research are currently being undertaken in the laboratory. These include
the dynamical screening of disordered potentials due to mean-field interac-
tions (observed through the lifetime of coherent Bloch oscillations in applied
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gradients), the use of low-field Feshbach resonances [291, 292] to tune the
interspecies scattering length in one-dimensional bosonic mixtures, and the
implementation of state-selective dynamical control over the particles’ time-
averaged band-structure [293] for modification of the tunneling [294–296] and
creation of tunable gauge potentials [255].

Moreover, our experimental ability to independently control the localiza-
tion of different species in an optical lattice lends itself to a number of direc-
tions of future research. In an earlier study [44], we observed some indications
of possible polaronic coupling when atoms were immersed in a superfluid bath.
More focused investigations along these lines, such as to measure directly the
induced density “dips” (by modification of Franck-Condon overlaps) through
rf spectroscopy [52] or to observe the clustering of polarons through Bragg
spectroscopy [63], could be made to study polarons in this system. In a sim-
ilar system, one can explore the physics of the spin-boson model [232, 297],
where coupling of localized atomic “qubits” (with coherent control over e.g.,
some internal pseudospin or lattice orbital occupation) to a bosonic bath can
lead to local dissipation and also long-range interactions between the “qubits”.
I certainly look forward to seeing the interesting physics that will come out of
this lab for years to come.
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[81] N. Bohr. Über die Serienspektra der Elemente. Zeitschrift für Physik,
2:423–478, 1920.

[82] F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundaram, and M. G.
Raizen. Atom optics realization of the quantum δ-kicked rotor. Phys.
Rev. Lett., 75:4598–4601, 1995.

[83] D. R. Grempel, R. E. Prange, and S. Fishman. Quantum dynamics of a
nonintegrable system. Phys. Rev. A, 29:1639–1647, 1984.

[84] S. Adachi, M. Toda, and K. Ikeda. Quantum-classical correspondence in
many-dimensional quantum chaos. Phys. Rev. Lett., 61:659–661, 1988.

[85] F. London. The δ-phenomenon of liquid helium and the Bose–Einstein
degeneracy. Nature, 141:643–644, 1938.

[86] H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping.
Springer-Verlag, New York, 1999.

[87] S. Chu. Nobel lecture: The manipulation of neutral particles. Rev. Mod.
Phys., 70:685–706, 1998.

[88] C. N. Cohen-Tannoudji. Nobel lecture: Manipulating atoms with pho-
tons. Rev. Mod. Phys., 70:707–719, 1998.

[89] W. D. Phillips. Nobel lecture: Laser cooling and trapping of neutral
atoms. Rev. Mod. Phys., 70:721–741, 1998.

[90] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell. Stable,
tightly confining magnetic trap for evaporative cooling of neutral atoms.
Phys. Rev. Lett., 74:3352–3355, 1995.

[91] N. Masuhara, J. M. Doyle, J. C. Sandberg, D. Kleppner, T. J. Greytak,
H. F. Hess, and G. P. Kochanski. Evaporative cooling of spin-polarized
atomic hydrogen. Phys. Rev. Lett., 61:935–938, 1988.

[92] K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle.
Evaporative cooling of sodium atoms. Phys. Rev. Lett., 74:5202–5205,
1995.

[93] E. A. Cornell and C. E. Wieman. Nobel lecture: Bose–Einstein conden-
sation in a dilute gas, the first 70 years and some recent experiments.
Rev. Mod. Phys., 74:875–893, 2002.

155



[94] W. Ketterle. Nobel lecture: When atoms behave as waves: Bose–
Einstein condensation and the atom laser. Rev. Mod. Phys., 74:1131–
1151, 2002.

[95] M. Inguscio, S. Stringari, and eds. C. Wieman. Bose–Einstein Con-
densation in Atomic Gases, Proceedings of the International School of
Physics “Enrico Fermi” Course CXL. IOS Press, Amsterdam, 1999.

[96] C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute
Gases. Cambridge University Press, New York, 2008.

[97] T. D. Lee and C. N. Yang. Low-temperature behavior of a dilute Bose
system of hard spheres. I. equilibrium properties. Phys. Rev., 112:1419–
1429, 1958.

[98] E. P. Gross. Structure of a quantized vortex in boson systems. Nuovo
Cimento, 20:451, 1961.

[99] L. P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP,
13:451, 1961.

[100] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell,
and C. E. Wieman. Dynamics of collapsing and exploding Bose-Einstein
condensates. Nature, 412:295–299, 2001.

[101] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental obser-
vation of optically trapped atoms. Phys. Rev. Lett., 57:314–317, 1986.

[102] A. Ashkin. Optical trapping and manipulation of neutral particles using
lasers. Proc. Natl. Acad. Sci. USA, 94:48534860, 1997.

[103] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom - Photon
Interactions: Basic Process and Appilcations. Wiley-VCH Verlag GmbH,
Weinheim, Germany, 2008.

[104] D. Jaksch. Bose–Einstein condensation and Applications. PhD thesis,
Universität Innsbruck, 1999.

[105] M. Greiner. Ultracold quantum gases in three-dimensional optical lattice
potentials. PhD thesis, Ludwig-Maximilians-Universität München, 2003.

[106] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt–Saunders
International Editions, London, 1976.

156



[107] W. Zwerger. Mott-Hubbard transition of cold atoms in optical lattices.
J. Opt. B: Quantum Semiclass. Opt., 5:S9–S16, 2003.

[108] S. G. Albert. Cooling, trapping, and transport of atom clouds in a new
BEC apparatus. Master’s thesis, Stony Brook University, 2007.

[109] D. G. Greif. Evaporative cooling and Bose–Einstein condensation of Rb-
87 in a moving-coil TOP trap geometry. Master’s thesis, Stony Brook
University, 2007.

[110] D. E. Sproles. Laser spectroscopy and magneto-optical trapping of ru-
bidium atoms. Master’s thesis, Stony Brook University, 2008.

[111] D. Pertot, D. Greif, S. Albert, B. Gadway, and D. Schneble. Versa-
tile transporter apparatus for experiments with optically trapped Bose–
Einstein condensates. J. Phys. B: At. Mol. Opt. Phys., 42:215305, 2009.

[112] B. P. Anderson and M. A. Kasevich. Loading a vapor-cell magneto-optic
trap using light-induced atom desorption. Phys. Rev. A, 63:023404, 2001.

[113] D. A. Steck. Rubidium 87 D line data. available online at
http://http://steck.us/alkalidata. (revision 2.1.4, 23 December
2010).

[114] R. H. Reimann. Quantum gases in state-dependent optical potentials.
Master’s thesis, Stony Brook University, 2009.

[115] Yu. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D. Vredenbregt,
K. Helmerson, S. L. Rolston, and W. D. Phillips. Diffraction of a released
Bose-Einstein condensate by a pulsed standing light wave. Phys. Rev.
Lett., 83:284–287, 1999.

[116] P. L. Kapitza and P. A. M. Dirac. The reflection of electrons from
standing light waves. Proc. Cambridge Phil. Soc., 29:297, 1933.

[117] P. L. Gould, G. A. Ruff, and D. E. Pritchard. Diffraction of atoms
by light: The near-resonant Kapitza-Dirac effect. Phys. Rev. Lett., 56:
827–830, 1986.
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Appendix A

Delocalization of a spinful
kicked rotor

In this chapter, we consider (in simulations) a problem similar to that ad-
dressed experimentally in Chapter 5, namely the dynamical response of a
matter-wave field to time-dependent “kicking” with an optical lattice. How-
ever, instead of studying the influence of spatial quasidisorder on kicked rotor
behavior, here we consider “spinful” δ-kicking of a quantum rotor system, for
which the atoms are driven in a pseudorandom, aperiodic way by both lattice
pulses and spin rotations. As we will show, this analogously leads to classical
diffusion in momentum space.

A.1 Introductory discussion

Coherent spin-dependent transport of atomic matter-waves has been con-
sidered recently in several contexts, including the generation of entangle-
ment [223] and for quantum simulation of charged particles [298]. Some recent
proposals [175, 299, 300] have considered using spin-dependent “kicking” of
cold atoms (in a kicked-rotor type experiment) to study the influence of spin-
orbit coupling, i.e. broken time-reversal symmetry, on localization phenomena
of charged particles. In the spirit of studying the effects of spin-orbit coupling
on Anderson localization, here we consider a very simple case of the spinful
kicked rotor, where non-interacting atoms are periodically kicked by a lattice
that is completely state-selective (as described in Chapter 8), and couples dif-
ferent plane-wave momentum orders. Between each lattice kick, a variable
spin-rotation is applied to the atoms, causing coherent transitions between
two internal states. We find that for certain spin rotations applied, a break-
down of dynamical localization is achieved, leading to classical-like diffusion
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Figure A.1: Periodic driving of a matter-wave field by external (lattice pulse)
and internal (spin rotation) state driving. Lattice pulses (at bottom) with
kicking strength K occur with a frequency 2π/T , and periodic spin rotations
(at top, occurring with the same frequency) by an amount θ, where θ (modulo
2π) varies at a frequency 2πµ/T .

in momentum space, similar to the case of two incommensurate lattices in
Chapter 5.

A.2 System under consideration

We consider a collection of non-interacting atoms beginning in the plane-wave
state with zero momentum, approximately realized by a weakly-trapped Bose–
Einstein condensate. We consider the case of two internal states of the atoms,
|a〉 and |b〉 (e.g. as with hyperfine states |1,−1〉 and |2,−2〉), where the pos-
sibility of coherent internal state manipulation is assumed, for example by
applying resonant microwave radiation. Furthermore, we consider an optical
lattice oriented along one axis, with wavelength λ and wave number k = 2π/λ.
This lattice is assumed to be state-selective, addressing only atoms in the in-
ternal state |a〉, with a depth measured as sER (ER = ~2k2/2M the recoil
energy and M the atomic mass). A train of N pulses of this state-selective
lattice act on the atoms, having duration τ and periodic spacing T , and the
strength of the lattice is the same for each of the pulses (labeled j ∈ {1, N}).

For internal state manipulation we assume that some short fixed time ε
after the j-th lattice-pulse, a δ-like (in time) microwave spin-rotation by an
angle θj is performed (where a π rotation relates to a spin flip from |a〉 to |b〉,
|b〉 to −|a〉), where the subscript j denotes that, unlike for the lattice-kicking,
the rotation amount is not the same for each pulse. As shown in Fig. A.1, to
realize the case of two-frequency driving (at frequencies 2π/T and 2πµ/T ) we
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define the j-dependent spin-rotation angles as

θj = θ0 + 2πµj . (A.1)

The rotation angle θj thus increases linearly with the pulse-number j, and
modulo 2π it varies periodically (in the saw-tooth pattern shown in Fig A.1
with frequency 2πµ/T . The case of µ = 1 corresponds to commensurate fre-
quencies, where the spin is flipped by the same amount every period. We
note that the results that follow are found to be generalizable to other peri-
odic forms, such as θj = θ0 + 2πα cos2(µπj). Also, while we have considered
discrete-time spin-rotations, these results should likely be generalizable to hav-
ing a transverse field always on, with its strength varying in a time-periodic
way (neglecting effects of the state-selective light-shifts on the microwave tran-
sitions and effects of microwave dressing on the state-selective lattice).

In what follows, we write the Hamiltonian in the form of a δ-kicked rotor,
while in the simulations that follow we fully take into account the finite pulse
length (assumed to be τ = 10 ns). Additionally, we restrict ourselves to
a discrete basis of plane wave states as in Chapter 5, here with states |m〉
having momenta pm = 2m~k. We then write the Hamiltonian as

Ĥ = Ĥ0 + ~φ̂L
N∑
j=1

δ(t− jT ) + ~
N∑
j=1

(θj/2)σ̂yδ(t− jT − ε) , (A.2)

where Ĥ0 = (~κ/2T )
∑

mm
2n̂m is the time-independent kinetic energy part of

the Hamiltonian, the term

φ̂L =
K

κ

(σ̂0 + σ̂z)

2

⊗∑
m

(â†m+1âm + â†m−1âm) , (A.3)

accounts for state-selective lattice pulsing, and the final term accounts for the
spin rotations (we have neglected spin-dependent phase accrual in the form
of scalar σ̂z terms). Here, the term κ = 8ERT/~ defines the resonances of
the rotor (occurring for rational values of κ/4π) and K = κsERτ/2~ is the
stochasticity parameter, which delineates regimes of classically regular and
chaotic motion. The Pauli matrices used are given by σ̂0 = |a〉〈a| + |b〉〈b|,
σ̂y = −i(|a〉〈b| − |b〉〈a|), and σ̂z = |a〉〈a| − |b〉〈b|. The terms n̂m and â†m
(âm) are the number operator and creation (annihilation) operator for the
momentum mode |m〉.

In the following section, we shall present some numerical results for the
dynamical response of a spinful quantum field to spin-dependent lattice kicking
and spin-rotations, as a function of the kick number N , as well as of the tunable
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parameters K (relating to lattice depth) and µ (relating to the ratio of the
kicking frequency to the frequency at which the microwave spin-rotation rate
evolves).

A.3 Numerical simulations

We consider the case of off-resonant kicking with a lattice of wavelength λ =
785.5 nm, where the fixed pulse period T = 29 µs relates to κ/4π ≈ 0.43,
such that kicking the |a〉 atoms alone leads to dynamical localization (and a
fixed pulse duration τ = 10 ns). If no spin-rotations are applied, neither is
any increase in energy achieved for mixtures of the two species (as the atoms
are assumed non-interacting). Additionally, if the atoms are kicked by only
a single state-independent lattice (addressing both states equally), dynamical
localization is observed regardless of the form of the spin-rotation applied.

We first examine the dependence of growth on the incommensurability of
the kicking frequency and the frequency at which the spin-rotation evolves,
characterized by the ratio µ, where for µ = 0 or 1 the same spin rotation is
performed each time step. Prior to the first lattice kick, we begin with an equal
superposition of the two spin states. In the definition of the j-dependent spin
rotations of Eq. A.1, we set θ0 = 0, without loss of generality. To characterize
the dynamical response of the system, we fit a linear dependence of the energy
per atom ε (in units ER) on the pulse number N , i.e. a rate of growth ∆ε/∆N ,
fit in the range N = 1 to N = 200 pulses. We assume that a linear dependence
will be a reasonable approximation to the dynamical response, for either the
case of dynamical localization (where ∆ε/∆N will be zero) or for induced
classical diffusion where we expect ε ∝ N .

In Fig. A.2, we plot the value of this growth rate ∆ε/∆N as a function of
the commensurability parameter µ (in a limited range), for a kicking strength
of K = 3.17. We observe that when µ is equal to a rational number - such as
for 1/2, 4/7, 3/5, 5/8, 2/3, etc. - there is very little growth (with essentially
no growth for µ = 0, 0.5, 1), while otherwise non-zero growth rates can be
found for irrational values. This is consistent with the expectation that the
addition of an incommensurate second frequency should lead to a disruption
of the quantum interference that causes dynamical localization. In Fig. A.2,
we also point out three values of µ in particular, which we will examine in
more detail as follows. These values are µ = 0.6 (rational number with small
amount of continued fraction elements), 0.502 (rational number near to 1/2
and with slightly more continued fraction elements) and 2/(1 +

√
5) = 0.618...

(irrational number, the golden ratio).
We now look directly at the temporal (N) dependence for each of these
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Figure A.2: Dependence of energy growth rate on the commensurability of
lattice kicking and spin rotation frequencies. (a) Growth rate of the average
energy per kick N , ∆ε/∆N , as a function of the incommensurability parameter
µ. The growth rate is fit between N = 1 and 200 kicks, for a stochasticity
parameter of K = 3.17. The values of µ = 0.502, 0.6, and 0.618034... (the
golden ratio) are highlighted, as they will be examined further.

values of µ, for three different kicking strengths K = 1.585, 3.170, and 4.755.
What we observe is that for the most rational value, µ = 0.6, an oscillatory
behavior is generally observed, with destructive interference causing dynamical
localization. However, for very large kicking strength, some growth (possibly
transient over N = 200 kicks) is observed. We note that by looking at the
mean-energy per spin-state (as in the inset for µ = 0.6 and K = 4.755),
oscillations of a greater magnitude can often be seen than in the spin-averaged
energy. The suppression of growth for rational values of µ seems to rely on a
fine cancellation of this behavior. We observe for values of µ slightly away from
ratios of small integers, such as for 0.502, net growth in energy with N can
be achieved. For completely irrational values such as for the golden ratio, we
observe that the spin-dependent kicking always leads to an essentially linear
increase of ε with N , consistent with classical-like diffusion.

Lastly, we determine the dependence of the growth rate ∆ε/∆N on the
stochasticity parameter K. We find that the rational value of µ = 0.6 has a
growth rate of essentially zero for most values of K (and the non-zero value
at large K may be only a transient effect), and the value of µ = 0.502 has a
slightly irregular dependence on K, albeit with non-zero values. For the irra-
tional ratio of the spin-rotation evolution to the kicking frequency, µ = 0.618...,
we find the dependence on K is in good agreement with the classical diffu-
sion rate D = K2/2κ2 (with κ ≈ 5.42), i.e. also suggesting that classical-like
diffusion in momentum-space is occurring due to the addition of the incom-
mensurate frequency component.
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Figure A.3: Dynamics of the mean energy with increasing kick number, for dif-
ferent kicking strengths K and spin-rotation evolution frequencies (µ). Three
stacks of plots are shown for different values of µ, with the most commensu-
rate values on the left (µ = 0.6), moving to the most incommensurate at right
(µ = 0.502 and µ = 0.618...). For each value of µ, we show the dependence of
the particle energy ε on the kick number N , for kicking strengths K = 1.585,
3.170, and 4.755. As an inset for the case µ = 0.6 and K = 4.755, we show the
dynamics of the total energy (black) as well as that of the |a〉 state (red) and
|b〉 state (blue). Note the different scales of the energy axis for the different
cases.

A.4 Concluding remarks

In conclusion, we have performed numerical simulations of a simple situation
of spinful kicking of a quantum rotor, leading to classical-like diffusion when
multi-frequency driving at incommensurate frequencies is present. This exam-
ple highlights how added spectral noise can cause a breakdown of quantum

179



0.15

0.10

0.05

0.00
0 1 2 3 4 5

K

∆ 
ε  /

 ∆
 N

µ = 0.618...

µ = 0.6

µ = 0.502

Figure A.4: Dependence of the energy growth rate ∆ε/∆N on the spin-
selective stochasticity parameter K, as determined by a linear fit from N = 1
to 200 kicks. We plot the dependence on K for the cases of µ = 0.6 (blue line),
µ = 0.502 (red line), µ = 2/(1 +

√
5) = 0.618... (green line). We also show the

expected classical diffusion constant D = K2/2κ2 (dashed black line).

interference phenomena, and also how non-separable coupling between internal
and external degrees of freedom can affect the localization of spinful quantum
fields.
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