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Abstract of the Thesis

Cooling, Trapping, and Transport of Atom Clouds

in a New BEC Apparatus

by

Stephan Gerhard Albert

Master of Arts

in

Physics

Stony Brook University

2007

This thesis discusses laser cooling, magnetic trapping, and mechanical trans-

port of ultracold atom clouds of rubidium in a new Bose-Einstein condensation

(BEC) apparatus. After an introduction on different apparatus designs and

a discussion of the techniques employed in our experiment, we describe the

development of a preparation sequence for subsequent evaporative cooling and

characterize the single stages.

We demonstrate a promising efficiency of the entire sequence: up to

1.2×1010 atoms can be caught from a rubidium vapor with a magneto-optical
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trap, then compressed, and further cooled by optical molasses. The cloud is

subsequently transferred into a quadrupole magnetic field. The coils for this

magnetic trap are mounted on a translation stage, which moves the atoms to a

10−12 torr vacuum glass cell where evaporative cooling will be performed. We

can transfer about 2.5×109 atoms to this glass cell. We measure parameters

important for successful evaporation and discuss the realizability of BEC in

our apparatus.
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tern danken. Ohne ihre Unterstützung, ihren Glauben an mich und ihren
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Chapter 1

Introduction

In 1924 the Indian physicist Satyendra Nath Bose derived the spectrum of

Planck’s blackbody radiation by purely statistical arguments using the prin-

ciple of indistinguishability of radiation quanta. He sent his article to Albert

Einstein, who translated it to German, published it [1], and extended the work

with considerations about the properties of the monatomic ideal quantum gas

[2–4]. He predicted that below a certain (very low) critical temperature Tc,

a considerable (“macroscopic”) fraction of the gas atoms would gather in the

common lowest energy level. The gas would undergo a phase-transition. This

phenomenon became known as “Bose-Einstein condensation” (BEC).

Einstein’s derivation only relates to non-interacting particles. It had

been doubted that Bose-Einstein condensation could occur in reality because

of the interaction between particles in any physical system. It was soon real-

ized, however, that superfluidity in liquid helium, a strongly interacting sys-

tem, discovered in 1937, could be understood with the theory of Bose-Einstein

condensation. The phenomenon of superconductivity can also be regarded as

1



Bose-Einstein condensation of coupled electron pairs, so-called Cooper pairs.

In dilute gases, the first Bose-Einstein condensates were observed in 1995,

disproving the assumption that gases would solidify long before reaching the

conditions for condensation. Three competing research teams were success-

ful in that year: the group of Carl Wieman and Eric Cornell in Boulder [5]

with the element rubidium, the group of Wolfgang Ketterle at MIT (sodium)

[6], and the group of Randall Hulet at Rice University (lithium) [7–9]1. The

years following the observation of Bose-Einstein condensate in gases in 1995

were marked by extensive research on a great variety of fascinating properties

Bose-Einstein condensates exhibit, such as observation of interference between

two condensates [10], the realization of the first “matter laser” [11–13], phase-

coherent amplification [14, 15], vortices [16, 17], the observation of Feshbach

resonances, BEC in optical lattices, and the study of strongly correlated sys-

tems [18–20].

1.1 Bose-Einstein condensation - some quan-

tum statistics

In this section we will summarize briefly the results of the statistical theory

of Bose gases. For a more detailed treatment the reader is referred to the

standard literature, e. g. [21, 22].

In a system of non-interacting bosons the average occupation f(εk) of a state

1The analysis of 1995 was corrected in 1997: the originally reported number of 2 × 105

condensed atoms was corrected to 1000. The conclusion that BEC had been observed,
however, remained unchanged.
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with single particle energy εk is:

f(εk) =
1

eβ(εk−µ) − 1
, (1.1)

where β = 1
kBT

, with T the temperature and µ the chemical potential. The

total number of particles is then just given by summation of the above expres-

sion over all single particle states k, which can - for small energy spacings - be

expressed as the integral:

N(T, µ) =

∫ ∞
0

g(ε)

eβ(ε−µ) − 1
dε , (1.2)

where it was necessary to multiply by the density of states g(ε) in order to go

from summation to integration properly. If the particles of mass m are confined

in an anisotropic harmonic potential U(x, y, z) = 1
2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

as in most BEC experiments, the density of states, for example, is g(ε) =

1
2
ε2

~ω , where ω := 3
√
ωxωyωz. For a gas confined in a box with volume V ,

g(ε) is 1
(2π)2

V
(

2m
~2

)3/2√
ε. Bose-Einstein condensation occurs for a fixed atom

number N at the critical temperature Tc, where the chemical potential

µ(T ), implicitly given by equation 1.2, becomes zero. The integral for this

point µ(Tc) = 0 can be expressed as:

N

V
=

(2πmkBTc)
3/2

(2π~)3 ζ(3/2) for the gas in the box (1.3)
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and

N =

(
kBTc

~ω

)3

ζ(3) for the gas in the harmonic potential, (1.4)

where ζ(s) =
∑∞

n=1
1
ns

is the Riemann Zeta-function, ζ(3) ≈ 1.202, ζ(3/2) ≈ 2.612.

Defining the thermal de Broglie wavelength λT as

λT =
2π~√

2πmkBT
, (1.5)

we can give a criterion for BEC (for the gas in the box):

nλ3
Tc
∼= 2.612 , (1.6)

with n = N
V

the (number) density. The product nλ3
T is also called “phase

space density” D. For a harmonic potential2, a straightforward calculation

gives the fraction of condensed particles from equation 1.23:

N0

N
= 1−

(
T

Tc

)3

for T < Tc , (1.7)

where N is the total number of particles and N0 the number of condensed

particles. The results in equations 1.6 and 1.7 give criteria for condensation

that are very descriptive: BEC occurs at a critical temperature Tc when the

2For the gas in the box, the calculation is analog and the exponent in equation 1.7 is 3/2.
3Because g(ε = 0) = 0, the integral does not count particles in the ground state, so for a

macroscopic occupation of the ground state N0, it only gives the number of atoms in excited
states Nex = N − N0, the “uncondensed fraction”. By calculating, however, N with the
parameters (T = Tc, µ = 0) and Nex with (T < Tc, µ = 0) separately, one retrieves the
number of condensed atoms by subtraction: N0 = N −Nex.
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thermal wavelength λT, i. e. the atoms’ de Broglie wavelength associated with

their thermal motion, becomes comparable to the typical distance between

particles (V/N)1/3. The more the gas is cooled under the transition temper-

ature Tc, the more the single particle wavefunctions will overlap with each

other. At T = 0, they form one big wavefunction which describes all of them.

The particles have lost their “individuality” and become a pure condensate.

The fact that BEC in gases is a metastable phenomenon (with respect

to the solid state) dictates the necessity of very low densities. In alkali gases,

they should not exceed ∼ 1014 cm−3. This, in turn, results in extremely low

critical temperatures: the typical range is some hundred nanokelvins to a few

microkelvins. It was soon clear that this temperature regime could not be

reached with traditional cooling methods. Instead, the realization of BEC in

alkali gases is intimately linked with the emergence and development of laser

cooling in the 1980s [23], an entirely new field of atomic physics on its own.

But even the astonishing capabilities of laser cooling mechanisms alone are

not sufficient to produce the temperatures and densities needed. The final key

for the realization of BEC was surprisingly simple: evaporative cooling, first

proposed by Hess [24], could lower the temperature to and below the critical

point. This mechanism is just what everybody knows from daily-life experi-

ence about the cooling down of a hot cup of tea: the hottest molecules in the

liquid have so much thermal energy that they are able to escape it, each of

them carrying away higher-than-average thermal energy. Thus, the remaining

molecules rethermalize at a new, lower average energy. The necessary confine-

ment of the atom cloud in a conservative potential during this final cooling

5



phase is provided by magnetic or optical trapping, which is the third major

tool for successful condensation.

In the following section we will give a quick overview on the different

experimental methods that successfully led to BEC. In the next chapter, we

will then explain our own apparatus, which employs many standard techniques,

but also exhibits some novel technological aspects.

1.2 Different designs

Almost all BEC machines have the combination of laser cooling, magnetic

trapping, and evaporative cooling in common. Laser cooling (and trapping)

reduces the temperature to a regime where the atoms can then be magnetically

trapped. Once confined in a magnetic trap, the atoms are further cooled by

evaporation. Different machine designs are different answers to some typical

challenges that every new BEC experiment faces: one of them is the different

requirements of laser cooling and evaporative cooling on pressure: evaporative

cooling is a lengthy process and thus requires a very low gas pressure in order to

not lose the magnetically trapped cloud by collisions with the background gas

before condensation occurs. A common technique used for pre-cooling, the so

called vapor cell magneto-optical trap (MOT), needs, however, a significantly

higher background pressure in order to cool and trap a considerable amount

of atoms. The operation principle of a MOT, first demonstrated by Raab et

al. [25], will be discussed in more detail in section 2.4. For the purpose of

this overview, the MOT may be described as a laser cooling mechanism in the
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presence of a quadrupole magnetic field. The optical forces, in combination

with the field, not only slow down, i. e. cool the atoms, but also trap them

at the minimum of the magnetic field. Alternatively to the method described

in this thesis, the aforementioned pressure issue, peculiar for the vapor cell

MOT, can be avoided by loading the MOT not from a vapor, but from a slow

atomic beam, produced by a Zeeman slower [26].

Another concern is the choice of the field geometry of the magnetic trap,

for it turns out that certain traps, namely those with a vanishing magnetic field

at the “bottom of the trap” (the local minimum of the trapping potential),

have a “hole” at exactly that point: in a magnetic trap only atoms in certain

magnetic hyperfine states (“trapped spin state”) experience a confining poten-

tial while for atoms with an opposite spin quantum number the potential is

repelling. The degeneracy of those states at zero field is removed in a magnetic

field by the well-known Zeeman effect. Due to the possibility of spin flips to

untrapped states (“Majorana losses”) in regions of negligible fields, magnetic

traps with a field zero at their bottom “leak out”. This is not dramatic for the

temperatures achieved by laser cooling, for which the relative size of that hole

with respect to the total size of the cloud is small. However, the losses become

severe during evaporative cooling. In fact, it is not possible to get even close

to BEC with this obstacle. A typical example for traps with this problem is

the magnetic quadrupole field (section 2.7).

The atoms are usually evaporated by applying radio frequency (RF),

which can flip the spin state of an atom from a trapped to an untrapped

state. Atoms in an untrapped state are repelled from the trap region and

7



thus removed from the rest of the trapped atomic cloud. In an inhomogeneous

magnetic field, as in a magnetic trap, the energy splitting of the spin states

is position-dependent. This allows to tune the RF so that only the outmost,

i. e. hottest atoms are flipped. Evaporative cooling is then executed by slowly

ramping down the frequency of the “RF knife”.

The first BEC realized in Boulder [5] used a rubidium vapor cell magneto-

optical trap (MOT). The atoms pre-cooled by the MOT were (after a compres-

sion of the MOT, see section 3.4) trapped with a quadrupole trap. Majorana

losses were eliminated by adding a rotating bias field to the quadrupole field.

This invention became known as TOP (“time-orbiting potential”) trap [27].

The setup characterized in this thesis uses this scheme as well4. Evapora-

tion was then performed by means of RF. Because the atoms were evaporated

in the vapor cell itself, the observed BEC was small compared to the later

experiments because of the pressure limitations described above.

The MIT experiment [6] took a different approach to BEC in some as-

pects. A Zeeman slower was used to load the atoms into a “dark SPOT”

(“spontaneous-force optical trap”) [28], a modification of the MOT. In this

way, the problems of a vapor cell were avoided and the dark SPOT provided

sufficiently high densities as a starting point for evaporation. In this experi-

ment, the hole in the magnetic trap was quite literally “plugged” by focusing a

laser beam to the center of the trap. The resulting optical dipole force repelled

the atoms from the trap center.

A method used to solve the pressure dilemma in the vapor cell was the

4By the time this thesis was written the TOP trap had been designed, constructed, and
extensively characterized, but not yet operated.
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invention of the double MOT [29, 30]. This approach uses two MOTs: the

first (“dirty” MOT) is placed in a chamber of the vacuum system where it

can quickly load from an atomic vapor. By multiple transfer of the trapped

atoms, the second (“clean”) MOT, installed in a region with a pressure more

than one order of magnitude lower than in the first chamber, is loaded. Also,

the quadrupole field was replaced in many experiments by more complicated

coil geometries, described in reference [31], which have a non-vanishing mag-

netic field at the potential minimum. Among them, the Ioffe-Pritchard, first

implemented in reference [25], is the most prominent type. A variant of it was

used for BEC by the MIT group as early as 1996 [32]. The first condensate in

a pure Ioffe-Pritchard trap was demonstrated in 1998 [33].

BEC has also been demonstrated without the use of magnetic trapping.

Instead, after conventional cooling with a MOT, the atoms were trapped by

two intersecting high power laser beams, employing the intensity dependent

optical dipole force [34]. The trapped cloud was then evaporatively cooled

by lowering the intensity of the lasers, thereby decreasing the height of the

potential and not overly reducing the trap stiffness. The method was called

“all-optical” BEC although this term is misleading, because the experiment

still employed a MOT, which does use a magnetic field. The final cooling was

also conducted by an evaporation procedure, and not by laser cooling, which

might be suggested by the term “all-optical”.

Another innovation was the production of a BEC on a microelectric chip

[35, 36]. Here, the magnetic trap consists of fields generated by lithographic

conductors on the chip and external bias fields. The advantage of this ap-
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proach is the realizability of much higher magnetic field gradients than in the

conventional scheme, leading to better confinement and faster rethermaliza-

tion during evaporation. The entire evaporation stage on a microchip lasts

about 1 s, a factor of 20 less than in standard magnetic traps, and the require-

ments on background pressure are thus less stringent. The experiments also

demonstrated the transport of a condensate along an “atomic conveyor belt”

on the chip [35].

The idea of the double MOT design, namely spatial separation of the

capture and laser cooling part from the evaporation part can also be achieved

by transport of magnetically trapped clouds. This was realized in two variants:

a chain of quadrupole coils was built to guide atom clouds from a MOT to

the magnetic trap in which evaporation was executed [37]. A second approach

is the mechanical transportation of cooled and trapped atoms just with one

quadrupole trap that is mounted on a translation stage [38]. The trap moved

by the stage can thus freely travel through the vacuum system. The design of

our experiment is inspired by this idea.
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Chapter 2

Description of the apparatus and theory of the

employed techniques

This chapter will give an overview of our BEC apparatus. The apparatus is

designed to produce condensates from the 87Rb-isotope of the element rubid-

ium. This overview will be followed by explanations of the theory and the

basic principles of the employed cooling and trapping techniques intended for

a reader unfamiliar with this field.

2.1 Overview

Figure 2.1 shows a schematic view of the apparatus. The two core parts are the

vapor cell (or “MOT cell”) and the science cell (“glass cell”). This realizes a

spatial separation of the laser-cooling (vapor cell) and the evaporative cooling

(science cell) stages of the experiment in regions with suitable pressures. The

vapor cell consists of Pyrex glass and the science cell of quartz glass. The

shape of the vapor cell is cylindrical with an outer diameter of 5.7 cm. Its

11



axis is oriented in the x-direction1. The science cell is cuboidal. Its width

(y-direction) is 1.0 cm and its height (z) 2.0 cm (inner dimensions). Both cells

are placed in different regions of a vacuum system, which is pumped by two

ion pumps, one for each region. The regions are connected by a differential

pumping tube (“thin tube”). The vapor cell is characterized by a non-rubidium

pressure of ∼ 2×10−10 torr and typical rubidium pressures of 109-108 torr while

the pressure in the ultra-high vacuum science cell is less than 5×10−12 torr. We

will sometimes refer to the transfer chamber between the differential pumping

tube and the science cell as “square chamber”. The vacuum system is to be

treated in more detail in reference [39]. Connected to the vapor cell is the

rubidium oven, which provides the rubidium gas in the vapor cell. The oven

can be manually opened and its temperature is controllable.

Up to 1.2× 1010 Rb atoms are captured, laser-cooled, and trapped with

a magneto-optical trap (MOT) directly from the vapor (section 2.4) in a time

of ∼ 10 s. At this point, the cloud has a temperature of a few hundred mi-

crokelvins. The magnetic field is generated by a fast-switching quadrupole

magnetic trap (section 2.7). Residual magnetic fields, such as Earth’s mag-

netic field, are eliminated by three bias field coils (not shown). Subsequent

to the MOT stage, a sudden compression of the MOT (section 3.4) within

∼ 500 ms increases the density of the atomic cloud. This stage is immediately

followed by laser cooling via optical molasses (section 2.5) for ∼ 5 ms, which

lowers the temperature to ∼ 25 µK, a temperature that clearly indicates sub-

Doppler cooling mechanisms (section 2.6). Optical pumping (section 3.6) for a

1See the figure for definition of the lab coordinate system.
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Figure 2.1: The apparatus: the figure shows a schematic drawing (to scale) of the
parts of the apparatus that are relevant for the discussion of this thesis. The MOT
optics and laser system, however, are not shown in this figure. The apparatus also
includes: coils for bias fields, cooling hoses and holders for the quadrupole coils,
various stages for optical installations etc.
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few milliseconds then increases the number of atoms in magnetically trappable

atomic states. The cloud, having been prepared thusly, is then caught in a

magnetic trap (section 2.7) produced by the same quadrupole coils that create

the magnetic field for the MOT. We can catch 1-3×109 atoms in the magnetic

trap. Immediately after the catch, the temperature of the cloud is ∼ 80 µK.

A quasi-adiabatic compression in the magnetic trap raises the temperature

to ∼ 350 µK. The quadrupole coils are mounted on a mechanical translation

stage that can freely travel in the x and y-directions, allowing movement of

the trapped atoms through the vacuum system. The transport of the trapped

cloud already starts during compression of the trap and guides the atoms on

a z-shaped path to the UHV region. We can transfer the atoms with an effi-

ciency of ∼ 70-80 % in ∼ 3.5 s from the vapor cell to the science cell (section

3.8), where the evaporation will then be performed. The TOP trap for the

evaporation has already been designed and constructed, but not yet operated.

We do not use an additional magnetic trap in the science cell: the TOP trap

just consists of the same quadrupole coils used for the MOT and the transport

and two smaller coil pairs that create the rotating bias field. The TOP trap

will not be described in this thesis.

2.2 Rubidium and laser system

The set of elements which can be Bose-condensed is limited by some con-

straints: 1) Needless to say, they must be bosons. 2) Laser cooling must

(generally) be possible, which limits the choice to alkali, alkaline-earth atoms,
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and some metastable noble gases. 3) High-power laser light must be available.

4) The element must have a favorable ratio of so-called “good” collisions, which

support rethermalization, to “bad” collisions, which cause trap losses. Because

of these limitations, BEC was originally pursued in alkalis and spin-polarized

hydrogen (which is an exceptional case, for it is not laser-cooled). After the

observation of BEC in 87Rb [5], 23Na [6], and 7Li [7] in 1995, it was also re-

ported in atomic hydrogen [40], 85Rb [41], 41K [42] 2, metastable 4He [43, 44],

133Cs [45], 174Yb [46], and 52Cr [47]. For this experiment, rubidium was chosen.

It can be cooled with low priced diode lasers (instead of expensive dye lasers),

and it also exhibits favorable properties for the optical lattice experiments that

will be performed in this research group.

Laser cooling relies on the scattering of photons by the atoms that are

to be cooled. In the simplest picture, atoms moving in a certain direction

are slowed down, hence cooled, by a bombardment of photons traveling in the

opposite direction. The photons come from a laser that is tuned to a transition

frequency of the atomic level structure. They are absorbed by the atom, which

consequently goes to an excited internal state. The momentum of a photon

~k, with k = 2π
λ

and λ the laser light wavelength3, is transferred to the atom

by a first kick slowing it down. The atom returns to its internal ground state

by spontaneous reemission of the photon in a random direction. To conserve

momentum, the atom experiences a second recoil kick in the direction opposite

2BEC in 85Rb and 41K was indirectly obtained by evaporation of (87Rb), which was in
thermal contact with those gases during the process, a method called “sympathetic cooling”.

3Definitions of abbreviations with a global meaning in the context of this thesis, such as
λ, may not be repeated every time they appear. Instead, the reader can find a list of those
abbreviations in appendix D.
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to that reemission. Because of the random nature of this second recoil kick,

its net effect after many scattering events is zero while every absorption event

slowed the atom down by ~k/m in its defined direction of travel. It can also

be easily shown that the energy of the emitted photons is higher than that

of the absorbed photons due to the Doppler effect. The energy difference is

supplied by the kinetic energy of the atoms. Thus, the atom’s velocity in its

direction of travel is reduced.

To slow down atoms from room temperature to close to 0 K, tens of

thousand scattering events are necessary. For this reason, one needs a closed

transition within the atomic level structure, i. e. the atom needs to return

after every excitation to the same ground state it came from. Atoms that have

fallen into another ground state are lost because the laser light can only couple

one specific ground state to one specific excited state. Rubidium (as all alka-

lis) provides such a closed transition. Figure 2.2 shows the D2-line of the level

structure of 87Rb. Important data for 87Rb is found in appendix D. We use the

5 2S1/2,F = 2 → 5 2P3/2,F
′ = 3-transition to cool the atoms. Because of the

iterative nature of the process, it is usually called the “cycling transition”

and the laser used is referred to as cycling laser. This is a closed transition

because of the selection rules for angular momentum. For the hyperfine quan-

tum number F only ∆F = 0,±1 is allowed in a transition. Thus, atoms in

the F ′ = 3-state can only decay to the F = 2-state. Hence, the cycling laser

is tuned to that frequency. The cycling laser in our experiment is an exter-

nal cavity diode laser built by Sacher Lasertechnik with an output power of

∼ 1000 mW. It is frequency-stabilized with a polarization spectroscopy locking
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5 2S1/2

5 2P3/2

F = 3

F = 2

F = 1
F = 0

F = 2

F = 1

266.650(9) MHz

72.9113(32) MHz

156.947(7) MHz

72.218(4) MHz

2.563 006 GHz

4.271 677 GHz

780.241 210 nm
384.230 484 GHz
    1.589 049 eV

gF = 2/3

gF = 2/3

gF = 2/3

gF = 1/2

gF = – 1/2

Repumping

Cycling

Figure 2.2: Relevant part of the level structure of 87Rb (D2-line): the cycling F =
2 → F ′ = 3 and the repump transition F = 1 → F ′ = 2 are marked. The drawing
is not to scale. The data is taken from reference [48].

technique described in reference [49]. Detuning from the locking frequency and

power can be controlled with acousto-optical modulators. A small amount of

the laser power is used for absorption imaging (chapter 3) and optical pump-

ing (chapter 3). The cycling light is coupled into an optical fiber which guides

it to the (separate) table with the vacuum apparatus and the MOT optics,

for which ∼ 250 mW of laser power are available. The laser system and the

locking techniques will be described in more detail in reference [39].
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The cycling transition is not totally closed, however. Because of the small en-

ergy spacing in the 5 2P3/2 between F ′ = 3 and F ′ = 2 of ∼ ~× 2π× 267 MHz,

atoms can also be excited to the F ′ = 2 by the cycling laser with a small, but

considerable probability. From there, they can not only decay to F = 2, but

also to F = 1, where they are lost for the cooling process. For this reason one

needs a second laser which is commonly called the “repumper”. It is tuned

to the 5 2S1/2, F = 1→ 5 2P3/2, F
′ = 2-transition and excites the atoms to the

F ′ = 2-state so that they can decay back to the F = 2-state, thus bringing

the “lost” atoms back into the cooling cycle. The repumper in this experiment

is also an external cavity diode laser, made by Toptica Photonics. Its output

power is ∼ 120 mW. It is frequency-stabilized with the same method as the

pumping laser. Its light runs directly to the vapor cell.

2.3 Atom-light interaction and laser cooling -

a very short introduction

The next paragraphs will be devoted to some basic aspects of the theory of

atom-light interaction which are necessary to understand the following sections

on magneto-optical trapping, optical molasses, and sub-Doppler cooling. Most

importantly, we will touch on the Rabi two-level problem, which serves as a

model in many descriptions of laser cooling mechanisms. Complete derivations

of the results are beyond the scope of this thesis and will not be given. Rather,

we will point out the important steps and the usual assumptions made in the

derivations. We will also neglect all phenomena that do not directly relate to
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the techniques used in this experiment. The section follows largely the book

by Metcalf and van der Straaten [23]. An exhaustive theoretical treatment of

the subject can be found in reference [50].

2.3.1 Time-dependent perturbation theory and two-level

problem

In order to describe the interaction with the light field, we assume an atomic

Hamiltonian H that can be decomposed into a time-independent part H0 de-

scribing the internal atomic structure and a time-dependent perturbationH′(t)

that contains the interaction with the (classically described) radiation field.

The Schrödinger equation for the atom including the interaction with the light

field is then:

Hψ(~r, t) = (H0 +H′(t))ψ(~r, t) = i~
∂ψ(~r, t)

∂t
(2.1)

Since the eigenfunctions φn(~r) of H0 form a complete set, we can make the

following ansatz for the solution of equation 2.1:

ψ(~r, t) =
∑
k

ck(t)φk(~r)e
−iωkt (2.2)

where Ek = ~ωk are the eigenvalues (so the unperturbed energy states) of H0.

This is the standard approach in time-dependent perturbation theory found

in all quantum mechanics textbooks covering the subject. The ansatz leads to
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coupled differential equations of the form:

i~
dcj(t)

dt
=
∑
k

ck(t)H′jk(t)eiωjkt (2.3)

where H′jk(t) := 〈φj |H′(t)|φk〉 and ωjk := ωj − ωk. Here, the first of three

major approximations is made: the atom is treated as a two-level system

consisting only of a ground (g) and an excited (e) level, which is a reasonable

assumption for an atom in a narrow-band laser field. The equations 2.3 then

lead to:

i~
dcg(t)

dt
= ce(t)H′ge(t)e

−iωat

i~
dce(t)

dt
= cg(t)H′eg(t)eiωat (2.4)

where ωa := ωe − ωg is the atomic resonance frequency. The time dependent

part of the Hamiltonian H′(t) for a single electron in an electromagnetic field

is

H′(t) = −e ~E(~r, t)~r , (2.5)

with e the elementary charge and ~E(~r, t) the electric field of the light at the

position of the atom. At this point, two other assumptions are generally

made: the rotating wave approximation (RWA) neglects terms of the order

1/ωl compared to 1/δ where ωl is the laser frequency and δ is the detuning

of the laser from resonance: δ := ωl − ωa. For a laser tuned close to the

atomic resonance frequency ωa, this is again an adequate assumption. The

third important approximation is the electric dipole approximation. It
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states that the spatial variation of the light field over the the relevant region

is negligible. This approximation is also valid for the case discussed; the

wavelengths in this context are usually in the range of ∼ 100 - 1000 nm whereas

the typical size of an atoms is ∼ 1 nm. For a plane wave ~E(~r, t) = E0ε̂ cos(kz−

ωlt), the matrix element H′eg(t) of the time-dependent Hamiltonian can be

expressed as H′eg(t) = ~Ω cos(kz − ωlt), where the Rabi frequency is defined

by

Ω =
−eE0

~
〈φe |ε̂~r|φg〉 =

−eE0

~
〈φe |r|φg〉 4. (2.6)

With these approximations and some manipulation equations 2.4 become:

d2cg(t)

dt2
− iδ

dcg(t)

dt
+

Ω2

4
cg(t) = 0

d2ce(t)

dt2
+ iδ

dce(t)

dt
+

Ω2

4
cg(t) = 0 . (2.7)

These equations can be solved analytically. They yield oscillating probabilities

for the atom to be in the ground or in the excited state. The frequency of

these oscillations is Ω′ :=
√

Ω2 + δ2, the generalized Rabi frequency.

2.3.2 Spontaneous emission and optical Bloch equations

As pointed out in section 2.2, spontaneous emission plays a crucial role in

(conventional) laser cooling schemes, for it provides the necessary dissipation.

To include spontaneous emission in the treatment of an ensemble of two-level

atoms, one has to make a transition to a statistical description because of the

4The last equality only holds for the electric dipole approximation, which assumes that
the atom dipole moment e~r aligns with the polarization ε̂.
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incoherence of the system. This is done by the introduction of the density

matrix ρ [21]

ρ =

(
ρee ρeg

ρge ρgg

)
. (2.8)

The equations 2.7 then lead to equations for the elements of the density

matrix, for example:

dρgg

dt
= i

Ω∗

2
ρ̃eg − i

Ω

2
ρ̃ge (2.9)

where5 ρ̃ge := ρgee
−iδt. Spontaneous emission is introduced by an exponential

decay of ρeg:

dρeg

dt
= −Γ

2
ρeg + induced effects . (2.10)

This leads to the so-called optical Bloch equations:

dρgg

dt
= +Γρee +

i

2
(Ω∗ρ̃eg − Ωρ̃ge)

dρee

dt
= −Γρee +

i

2
(Ωρ̃ge − Ω∗ρ̃eg)

dρ̃ge

dt
= −

(
Γ

2
+ iδ

)
ρ̃ge +

i

2
Ω∗ (ρee − ρgg)

dρ̃eg

dt
= −

(
Γ

2
− iδ

)
ρ̃eg +

i

2
Ω (ρgg − ρee) . (2.11)

The optical Bloch equations can be easily solved for the steady-state where

the time derivatives on the left hand sides of equations 2.11 are zero. One

5These equations are derived by assuming the relation of the density matrix of a pure
state to the coefficients of the corresponding wavefunction ρeg = cec

∗
g etc. In reference [51]

however, it is shown that spontaneous emission and the effects of the light field on the atom
from equations 2.7 can be treated separately, thus justifying the next step.

22



finds:

ρee =
s0/2

1 + s0 +
(

2δ
Γ

)2 . (2.12)

This is the population ratio of the atoms in the excited state to the atoms in the

ground state in an ensemble of atoms. Here, we use the common saturation

parameter s0 which is defined as

s0 :=
2 |Ω|2

Γ2
=
I

Is

(2.13)

where I is the intensity of the incident light beam and the saturation inten-

sity Is is defined as

Is =
2π2~c
3λ3τ

with τ =
1

Γ
. (2.14)

This gives us finally the total scattering rate Γsc, which is simply the product

of the population in the excited state multiplied by the decay rate of that state:

Γsc = Γρee =
Γ

2

s0

1 + s0 +
(

2δ
Γ

)2 . (2.15)

This result is important because of its direct applicability for the dissipative

(i. e. cooling) effects of laser light: it gives the rate by which the atoms are

slowed down by portions of ~k/m. In the limit of weak intensities (s0 � 1)

equation 2.15 becomes

Γsc =
Γ

2

I

Is

Γ2/4

Γ2/4 + δ2
. (2.16)
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As a function of the detuning δ, this equation describes a Lorentzian with

FWHM = Γ, the natural linewidth of the transition. For high intensities

(s0 � 1), Γsc saturates to Γ/2 on resonance. For intensities comparable to

or greater than Is, s0 cannot be neglected with respect to 1, and Γsc(δ) is a

Lorentzian with FWHM = Γ
√

1 + s0:

Γsc =
Γ

2

s0

1 + s0

(1 + s0)Γ2/4

(1 + s0)Γ2/4 + δ2
. (2.17)

This is the well-known effect of power-broadening: in a Doppler-free spec-

troscopy technique, spectral lines are broadened with respect to their natural

linewidth Γ if too much laser power is applied.

With these results, the scattering cross section of an atom σsc can be

obtained with the relation Iσsc = ~ωΓsc. For low intensities, the dependence

on I drops out and one finds the important result that the scattering cross

section for atom light interaction is on the order of λ2.

2.3.3 Light shifts

The interaction Hamiltonian H′(t) also effects shifts of the energy eigenstates

Eg and Ee. After a suitable manipulation of the Hamiltonian that offsets

the energy of the excited state by ~δ (cg(t) → cg(t), ce(t) → ce(t)e
+iδt) and

application of the rotating wave approximation, equations 2.4 become time-
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independent and the new interaction matrix H̃′ can be written as6:

H̃′ = ~
2

(
−2δ Ω

Ω∗ 0

)
. (2.18)

The eigenvalues λe,g of this matrix are:

λe,g = (−δ ∓
√
δ2 + |Ω|2)

~
2

. (2.19)

Expansion for low intensities (δ � |Ω| ∝ I) yields (after reversal of the ma-

nipulation of the Hamiltonian):

∆Eg =
|Ω|2~

4δ
, ∆Ee = −|Ω|

2~
4δ

. (2.20)

These energy corrections are called light shifts. In a strong light field, they

are ∆Eg,e = ± δ
|δ|

~|Ω|
2

. For negative detunings (δ < 0), the energy levels are

spread apart. An atom in the ground state is attracted to regions of high

intensity. An important application of the light shift are optical lattices: in a

standing wave the intensity varies spatially with a period of λ/2. Because of

the light shift, atoms in such a wave experience an effective potential and are

attracted to regions of higher or lower intensity depending on the detuning.

The resulting force is called the dipole force. If the scheme is extended

to three dimensions, a regular three-dimensional pattern of spots preferred

by the atoms is created, just like in a crystal, and is, therefore, called an

optical lattice. The light shift also plays an important role in the theoretical

6The notation is such that α |e〉+ β |g〉 →
( α
β

)
.
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description of lin ⊥ lin-polarization gradient cooling which will be explained

below (section 2.6).

2.4 The magneto-optical trap

Almost all BEC experiments use a magneto-optical trap (MOT) for pre-

cooling. Since its first demonstration [25], the MOT has become the workhorse

of ultracold atomic physics. It uses the combination of an inhomogeneous mag-

netic field and the dissipative radiative forces to cool and trap neutral atoms.

Thus, it confines the atoms in both momentum and position space. In this

respect, it differs from e. g. optical molasses, which will be described in the

next section 2.5.

We will here discuss the simplest one-dimensional case of a hypothetical

atom with total angular momentum Jg = 0 in the ground state and Je = 1

in the excited state. In a linear magnetic field B(z) = bzz ≡ bz, the Zeeman

shift causes a position-dependent splitting of the three magnetic sublevels of

the excited state me = 0,±1:

∆Ee = ωZ(z)~ = gJµBmeB(z) = g1µBmebz . (2.21)

Such a linear magnetic field can be generated by a quadrupole coil pair. Our

experiment uses for the magnetic trapping the same quadrupole coils as for

the MOT. The quadrupole field will therefore be discussed in section 2.7 about

magnetic trapping. Two circularly polarized counterpropagating laser beams

with opposite helicities are directed to the (spatial) region of the local min-
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imum of the magnetic field strength. Figure 2.3 shows a schematic view of

the situation discussed. We assume the laser light to be red-detuned, so

δ = ωl − ωa < 0. As explained qualitatively in the figure caption, the setup

is such that the laser beams exert a repulsive force that drives atoms at rest

to the trap center, as well as a damping force that slows down atoms that are

moving away from the trap center. Quantitatively, we can calculate a force

F of a laser beam on an atom by use of equation 2.15 by multiplying the

scattering rate with the momentum transfer per absorption:

F = ṗ = ~kΓsc =
~kΓ

2

s0

1 + s0 +
(

2δ
Γ

)2 . (2.22)

If F+ is the force from the σ+-beam and F− the force from the σ−-beam, then

the total force is FMOT = F+−F− for low saturation. For F+ and F−, we just

have to replace the detuning δ in equation 2.22 by effective detunings δ± that

take the Zeeman effect ±g1µBbz and the Doppler shift ∓kv into account:

δ± = δ ∓ kv ± g1µBbz . (2.23)

The total force FMOT can be expanded if the Doppler shift and the Zeeman

effect are small compared to δ. One finds:

FMOT ≈ −βv − κz , (2.24)

where the damping constant is β = 8~k2|δ|s0
Γ(1+s0+(2δ/Γ)2)2

and the spring constant is

κ = g1µBb
~k β. Those two contributions represent the dissipative, cooling and the
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Figure 2.3: Magneto-optical trapping: the degeneracy of the magnetic sublevels is
removed by the Zeeman effect. A linear magnetic field with B(z) = bz is assumed.
The counterpropagating beams are circularly polarized with opposite helicities as
shown. The laser light is red-detuned δ < 0.
The left figure shows an atom at rest at z′ > 0. It is in the mg = 0-state. Because
both beams are circularly polarized, it can only be excited to the me = 1-state by
absorption of a photon from the σ+-beam or to the me = −1-state by absorption
from the σ−-beam. For z > 0 and δ < 0, the Zeeman effect, however, shifts the
me = −1-state closer to resonance and reduces the detuning δ− for the transition
to this state while it increases the detuning δ+ for a transition to me = +1. Thus,
following equation 2.15, absorption from the σ−-beam coming from the right is more
likely, which pushes the atom back to the trap center. For z < 0 the situation is
analog with opposite signs.
The right figure shows an atom at z < 0 with positive velocity v (position 1). Its
finite velocity causes a Doppler shift: it “sees” the σ+-beam shifted to the red by
ωD = −kv1. The atom is at a position where the Zeeman shift ωZ for me = +1
(δ+ > 0) is so large that the Doppler effect ωD = −kv shifts the atom right in
resonance for the σ+-beam. This accelerates the atoms (a1 > 0) and drives it to the
trap center. At position 2 the situation is opposite: the atoms is traveling toward
the relevant beam (σ−). The Doppler effect is therefore a blue shift ωD = kv2.
Thus, absorption happens from the σ−-beam decelerating the atoms (a2 < 0). Both
situations are, however, not totally symmetric: the acceleration for z < 0 causes an
increase of the Doppler shift, which does not correspond to the decrease of δ+ in
the direction of travel. The deceleration for z > 0 decreases the Doppler shift which
accords with the decrease of (the absolute value of) δ−. Qualitatively spoken, this
means that the effective range of deceleration is larger than the one of acceleration:
the atoms are decelerated by a larger velocity than they are accelerated. Because
of that the MOT is actually able to effectively slow down and trap atoms.
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restoring, trapping force in a MOT. The trapping force is also called sponta-

neous forces because it originates from the spontaneous emission of the atoms.

This simple model can readily be extended to three dimensions so that one

needs a total number of six beams (figure 2.4). If one considers real atoms, the

magnetic sublevel structure is more complicated, but it was shown in computer

simulations [25] and – more important, experimentally – that the technique

not only works in the simple example given above, but also in reality.

Figure 2.4: A real MOT consists of a total number of six beams in three pairs, one
pair for every direction in space. The beams in a pair are counterpropagating with
opposite helicities (defined in an absolute frame). The schematic figure shows the
six beams and the two quadrupole coils with opposite currents, which generate the
magnetic field.

The number of atoms N in a MOT after switch-on is described by a

29



simple rate equation:

dN

dt
= R−N

(
1

τ1

+
1

τ2

)
− χ

∫
nMOT(~r)2 d3r . (2.25)

The first contribution R is the loading rate for an empty MOT. It depends

on the temperature of the vapor (which is usually a constant at room tem-

perature), the mass of the species trapped, the capture volume (the volume

of space where atoms are caught), the capture velocity (the maximum speed

at which atoms can be trapped7), and the density nVC of the gas in the vapor

cell. Capture volume and capture velocity are dependent on the operating

parameters of the MOT: magnetic field gradient b, beam diameter, and de-

tuning δ. The second term describes loss mechanisms: the time constant τ1

gives the lifetime of an atom in the trap limited by collisions with atoms of

the same species as the trapped gas, so rubidium in our case. It is inversely

proportional to the density of that gas nVC. The time constant τ2 reflects the

losses due to collisions with atoms of other species that may exist in the vapor

cell. Both time constants can be summarized to a single lifetime τ = τ1τ2
τ1+τ2

. If

the density of the trapped gas nVC is much greater than the density of atoms

of other species nal, which is equivalent to τ1 � τ2, then τ is approximately

equal to τ1, and the influence of other species can be neglected. The third

term takes losses from inner-trap collisions into account. For this reason, it is

7Following an estimate expression from reference [52], the capture velocity for rubidium
is ∼ 20 m

s , which means that a MOT collects the atoms from the low energy wing of
the Boltzmann distribution. The most probable speed of an atom in a rubidium gas is√

2kBT
m = 239 m

s at T = 25 °C.

30



proportional to the integral over the square8 of the density inside the MOT

nMOT. The constant χ is dependent on the nature of those collisions. If the

χ-term is neglected, equation 2.25 has the simple solution9:

N(t) = Rτ(1− e−
t
τ ) . (2.26)

So, the collision constant τ is also the characteristic time constant for the

loading of the MOT. Figure 2.5(a) shows the fluorescence of a MOT during

the loading, exhibiting the exponential form of equation 2.26 (see the remark

in the footnote there). It can also be inferred from the solution that the

maximum atom number in a MOT, Nmax, is given by

Nmax = Rτ = R
τ1τ2

τ1 + τ2

. (2.27)

Even though R can only be estimated in theoretical considerations, this result

has an important implication: for rubidium densities nVC much larger then

the density of other gases, so nVC � nal or τ ≈ τ1, the lifetime τ is inversely

proportional to nVC, while the initial loading rate R is (always) proportional

to nVC. This means that the maximum total atom number does not depend

on the vapor cell density nVC or, using the ideal gas law p = nkBT , the

background pressure pVC. In fact, Monroe et al. [54] observed a change of

Nmax by only 30 % over a range of two orders of magnitude of pressure. For

8Two collision partners, therefore the square.
9For nMOT(~r) = const. = ns, the solution is the same, but the loss constant τ has to

be replaced by a modified loss constant τs: τ → (1/τ + χns)−1 since χ
∫
nMOT(~r)2 d3r =

χn2
sV = χnsN [53]. This is an adequate approximation for MOTs far in the regime where

the density in a MOT is saturated because of photon reabsorption (see below).
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increasing pressure, Nmax develops as a function of pressure p as cτ2
τ2+c/p

where

c is some constant relating p and τ1 (see also figure 2.5(b)).
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(b) Pressure dependence of the MOT

Figure 2.5: MOT properties: the two figures illustrate remarks made in the text
about the MOT. Figure (a) is a measurement of the fluorescence of a MOT during
loading. The fluorescence is proportional to the atom number in the MOT. A
function of the form in equation 2.26 is fitted to the data. This is an appropriate
procedure because we operate our MOT at parameters at which it enters the density-
saturated regime (see below) very soon after the start of the loading, and thus
the remarks in the footnote to equation 2.26 apply. The value for the modified
loss constant (defined in the aforesaid footnote) τs in figure (a) is 1.8 s. In the
experiments (chapter 3), the MOT is usually loaded for 10 s. Figure (b) shows that
from a certain background pressure on the maximal atom number in a MOT does
not depend on pressure any more as explained in the text. For the measurement,
the rubidium oven at a temperature of 55 °C was opened so that the Rb pressure
could rise, and the maximal atom number was determined over a time of thirty-five
minutes. The upper limit for the atom number in our MOT is ∼ 1×1010 depending
on different other conditions. A typical size (4σ) of a MOT is 0.6-1.0 cm.

In the introduction we emphasized the decisive role of the density n

for the critical transition temperature Tc. Because of that dependence, we

want to give a short qualitative discussion on the density in a MOT. One

can principally distinguish three different regimes [55]. In the first regime,

the MOT contains only few atoms and the size of the cloud is limited by
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temperature. Since the repulsive force in equation 2.24 is linear, the MOT

has a harmonic potential. Therefore, we can use the equipartition theorem:

1/2 kBT = 1/2κj〈rj〉 where we want to indicate with the subscript j that the

spring constant κj is not necessarily the same in each direction. If more atoms

are added to the MOT, the size stays the same and the density increases.

This is, however, only true as long as laser beam photons scattered by atoms

inside the trap can leave the trap without reabsorption by other atoms inside

the trap. With more and more atoms in the trap, this reabsorption becomes

more likely, resulting in a repulsive force. The density in the MOT is then

limited at a value where the repulsive force just balances the restoring force

in equation 2.24. The numerical value of this maximum density ns is on the

order of ∼ 1011 cm−3 for the parameters at which we operate our MOT (see

chapter 3). The density has a linear dependence on the spring constant κ

which is exploited in the CMOT stage of our sequence (chapter 3). A nice

discussion of that effect is contained in reference [52]. The repulsive force

by rescattering causes a growth of the size of the MOT if more atoms are

added. Finally, the MOT extends even to regions where the absolute value of

the magnetic field B is large10. In those regions, sub-Doppler cooling, a term

which summarizes mechanisms that cool the atoms even under the Doppler

cooling limit (discussion in the next section, equation 2.29), does not work.

Those processes work only close to the magnetic field zero. The cloud then

enters the “two-component regime”, which means that two distributions are

present in the MOT: one is characterized by a very low temperature, high

10“Large” here means that the frequency associated with B, the Larmor frequency ωZ =
gJmJµBB

~ , is larger than the scattering rate Γsc.

33



density, and restricted to a small region around the trap center, the other is

hotter, less dense, and extends much farther. The result of a measurement

that illustrates this behavior is found in chapter 3.

2.5 Optical molasses

The spontaneous force of laser light associated with the scattering rate Γsc

can be used in a simple scheme to cool atoms: as in a MOT, the atoms are

exposed to six red-detuned beams, two counterpropagating for each direction

in space. Because of the negative detuning, an atom only experiences a large

spontaneous force from a beam if it is moving toward it, for the Doppler effect

shifts the atom closer to resonance in that case. In one dimension, the total

force on a atom can be calculated, exactly as in the discussion for the MOT in

the previous section, by subtracting the forces F+ and F− from the two beams

with the only difference that the effective detunings δ± now solely consist of

the Doppler shift ωD,± = ∓kv. This leads to the same friction coefficient as in

the discussion for the MOT:

β =
8~k2 |δ| s0

Γ(1 + s0 + (2δ/Γ)2)2
. (2.28)

A figurative representation of the forces from the two beams and the resulting

force is shown in figure 2.6. It illustrates that the two forces combine to a

force FMol that is damping for a certain region around around v = 0 where it

can be approximated as F = −βv, thus acting like a viscous force. For this

reason this technique was given the name “optical molasses” and its cooling
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effect was first observed in three dimensions in 1985 [56].
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Figure 2.6: Doppler Optical molasses in one dimension: two counterpropagating red-
detuned laser beams result in a damping force for velocities v . δ/k. The parameters
are chosen to be comparable with the situation in our experiment: δ = −3.5 Γ and
s0 = 4.

Laser cooling cannot achieve temperatures arbitrarily close to 0 K. With

the example of the one-dimensional optical molasses, we want to discuss11

briefly the limits of laser cooling. With the friction coefficient β, the energy

dissipated per unit time, the cooling rate, is given by dWc

dt
= FMol v = βv2.

However, there is also heating by the recoil energy (~k)2

2m
acquired by the atom

during absorption and during spontaneous emission. Its rate is dWh

dt
= 2 ×

2× (~k)2

2m
Γsc. The two prefactors reflect that there are two beams involved and

that there are also two recoil kicks per scattering event. Cooling stops when

both the heating and the cooling rate are equal: Ẇc = Ẇh. If one solves this

11The following derivation of the Doppler temperature was taken from [23].
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equation for v2 and plugs the result into 1/2 kBTfin = 1/2mv2, one recovers an

expression for the final temperature Tfin as a function of δ. This expression

can be minimized, yielding the result for the minimum temperature:

TD =
~Γ

2kB

, where s0 � 1 was assumed. (2.29)

This temperature limit is the so-called Doppler temperature limit TD. It

is the limit for a large group of cooling schemes and can be derived in a

much broader context than shown here. It is also the limit for the MOT

mechanism introduced in the previous section. For the D2-line in 87Rb, the

cycling transition in our experiment shown in figure 2.2, it is 146 µK.

It had originally been assumed that the Doppler limit is the fundamental

limit of laser cooling. The measurement of temperatures significantly below

the Doppler limit [57] was, therefore, a big surprise. In the next section we

are going to discuss two models of cooling below TD.

2.6 Sub-Doppler cooling

The observation of temperatures below the Doppler limit triggered the devel-

opment of a model by Dalibard and Cohen-Tannoudji that could explain the

effect [58]. They identified polarization gradients in the light field as reason

for the observed cooling below the Doppler limit. Polarization gradients occur

when two counterpropagating beams of different polarization interfere. In a

one-dimensional or two-dimensional discussion with two, respectively four in-

terfering beams, polarization gradients can be avoided because the orientations
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of the electric fields of all four beams can be chosen to be the same. In the

three-dimensional case, this is no longer possible and polarization gradients

are always present. We want to restrict ourselves to the usual discussion of

two special cases in a one-dimensional scheme. The first case is the so-called

lin ⊥ lin-configuration where the two counterpropagating beams are both lin-

early polarized, but their polarization vectors are perpendicular with respect

to each other. The second case is the σ+-σ−-constellation. Both beams are

circularly polarized, but with different helicities.

2.6.1 lin ⊥ lin polarization gradient cooling

We consider two laser beams traveling along the z-axis in different directions.

For simplicity, we assume equal intensities, so equal amplitudes E0/
√

2 of the

electric field. The beam traveling in positive direction is linearly polarized

along the x-axis, the other beam along the y-axis. The electric fields of the

two light fields can then be written as plane waves:

~E+(z, t) =
E0√

2
ε̂x cos(kz − ωt)

~E−(z, t) =
E0√

2
ε̂y cos(kz + ωt) , (2.30)

where ε̂x and ε̂y are the unit vectors in x and y-direction respectively. Super-

position of the two beams gives the total electric field ~E(z, t):

~E(z, t) = E0

(
1√
2

(ε̂x + ε̂y) cos(kz) cos(ωt) +
1√
2

(ε̂x − ε̂y) sin(kz) sin(ωt)

)
.

(2.31)
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This result implies the existence of polarization gradients in the electric field:

for z = 0, the light is polarized along the unit vector 1√
2
(ε̂x + ε̂y), which we

shall call the 45 °-direction. For z = λ/8, the light is right-circularly (σ−)

polarized. For λ/4 the light is again linearly polarized, but in the −45 °-

direction. For 3λ/8, the light is left-circularly polarized, so σ+-polarized, for

z = λ/2, the polarization is again linear in 45 °-direction. Between these

values it has elliptical polarization. The polarization thus changes within half

a wavelength, which is illustrated in figure A.1 (d) of appendix A.

The changing polarization is reflected in changing coupling strengths for

different magnetic substates in the ground level. Again for simplicity, we want

to assume that there are only two of them: mg = ±1/2. Following the discussion

in the section on the two-level atom, different coupling strengths are equivalent

to differing lightshifts. An atom that travels along the propagation direction of

the light beams is thus exposed to a potential rising and falling with a period

of λ/2. That means, however, that it permanently converts kinetic energy into

potential energy and vice-versa. The key mechanism for the cooling effect is

now optical pumping between the two substates, for potential hills of one

substate always coincide with potential valleys of the other: if the atom is

pumped after it has reached the top of a potential hill, potential energy is not

reconverted to kinetic energy. Instead, the atom finds itself in a valley and

has to climb a potential hill again. The difference in energy has been given

away to the light field. Hence, the atom always has to climb the hills, but

can never descend them and thus dissipates energy. Because of the analogy

of that situation with the fate of a famous figure of Greek mythology, this
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cooling mechanism has been called Sisyphus cooling. The interested reader

finds some illustration along with more a detailed explanation in appendix A.

Similarly as in the remarks on optical molasses, one can derive a friction

coefficient for Sisyphus cooling. It is larger than the one for optical molasses,

but its validity is restricted to a smaller velocity range. Thus, the scheme can

cool atoms pre-cooled by ordinary Doppler molasses to even lower tempera-

tures than the Doppler temperature TD, which we identified as the cooling

limit in section 2.5.

2.6.2 σ+-σ− polarization gradient cooling

In the σ+-σ−-constellation the two beams can be written as:

~E+(z, t) =
E0

2
(ε̂x cos(kz − ωt) + ε̂y sin(kz − ωt))

~E−(z, t) =
E0

2
(ε̂x cos(kz + ωt) + ε̂y sin(kz + ωt)) . (2.32)

The total field is found to be:

~E(z, t) = E0 cos(ωt) (ε̂x cos(kz) + ε̂y sin(kz)) . (2.33)

This field is always linearly polarized, but the direction of the polarization

performs a complete rotation within half a wavelength, which is shown in

figure 2.7. This rotation also evokes a cooling effect which does, however, not

allow a nice description as in the lin ⊥ lin-case. We want to give here only a

very qualitative explanation. We assume an atom with ground state J = 1,
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Figure 2.7: σ+-σ−-polarization gradient cooling: in the σ+-σ−-configuration the
polarization is always linear, but rotates with a period of λ/2. For an atom in
motion, this effects preferred scattering from one beam compared to the other,
which - for negative detuning - slows the atom down.

so three magnetic sublevels mg = 0,±1, and J = 2 in the excited state. For

atoms at rest in linearly polarized light, the population of the mg = −1 and

the mg = +1-state are the same. The motion of the atom in a field with

changing direction of polarization, however, gives rise to an additional term in

the Hamiltonian describing the response to the rapidly changing polarization.

This new Hamiltonian has different eigenstates than the Hamiltonian for the

atom at rest. The relevant effect of the additional term in the Hamiltonian is

that it perturbs the populations of the old eigenstates: the populations of the

mg = −1 and the mg = +1-state are no longer balanced. Because transitions

strengths also differ (mg = −1 → me = −2 from σ− e. g. is stronger than

mg = −1 → me = 0 from σ+), the imbalance in the population induced by

motion eventually causes a preferred scattering from one beam compared to

the other. For red detuning, the effect of this preferred scattering is such that

it slows the atoms down, regardless of their direction of motion. The complete

description is a nice exercise in perturbation theory [58].
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Although both mechanisms (the lin ⊥ lin and the σ+-σ−-scheme) de-

scribed above work quite differently, both rely on polarization gradients, and

their relevant effect is the same: temperatures well below the Doppler limit

are attainable even in ordinary optical molasses. The final temperature that

can be reached by the processes described scales with |δ|−1. For this reason,

one increases the red detuning during a molasses step; one starts with detun-

ings suitable for Doppler molasses and then enforces the polarization gradient

cooling by detuning the laser further from resonance. Sub-Doppler cooling ex-

ists both in optical molasses and in the magneto-optical trap. In the MOT it

is, however, restricted to a small region around the zero of the magnetic field.

For higher magnetic fields, other effects (e. g. velocity-selective resonance [59]),

which we will not discuss here, become important and the benefits from sub-

Doppler cooling disappear. The three-dimensional case, so e. g. the optical

molasses and the MOT in our experiment, can never be a pure case of the

two schemes presented above and is little understood. The experimental re-

sults, though, confirm that polarization gradient cooling also works in three

dimensions: temperatures as low as 1.1 µK have been observed [54].

2.7 Magnetic trapping

After pre-cooling with laser means, magnetic trapping provides the confine-

ment necessary in a BEC experiment for two reasons: evaporative cooling

needs some form of containment for the atoms so that they do not drift apart

and to generate the necessary density for a quick rethermalization after a cool-
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ing step. As the atoms are cooled, the trap also compresses the atom cloud

and increases the density that is critical for the BEC transition (equation 1.6).

Ions can be trapped only with a.c.-electric fields because trapping of

monopoles with static fields is not possible as stated in Earnshaw’s theorem.

Neutral atoms, however, can be trapped by use of the interaction VZ of their

magnetic dipole moment ~µ with a static magnetic field:

VZ = − ~B · ~µ . (2.34)

If we assume that the magnetic field is oriented along the z-axis, ~B = Bε̂z, and

that the magnetic moment is also quantized along ε̂z, the quantum mechanical

operator for this part of the Hamiltonian is:

HZ = gJ
µB

~
~B · ~J = gJµBmJB , (2.35)

where ~J is the total angular momentum and gJ is the g-factor for ~J . This result

can generally just be written as gJµBmJB where B := | ~B| is the magnetic field

strength (regardless of its direction) if the magnetic moment ~µ has enough

time to adjust to a (spatially or timely) changing field. The criterion for this

“adiabatic following” is that the Larmor frequency ωZ = gJµBmJB/~ is

larger than the rate at which the magnetic field changes:

ωZ �
1

B

∣∣∣∣∣d ~Bdt
∣∣∣∣∣ . (2.36)

Except near field zeros, this condition is generally fulfilled in neutral atom
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traps. The right side of equation 2.35 represents energy shifts of the atom

level structure by the magnetic field, the familiar Zeeman effect. But we

can also think about it as an effective conservative potential VZ(~r), which

is especially useful if the magnetic field spatially varies B = B(~r). From

this perspective, atoms can be trapped in two cases: a local minimum of the

magnetic field means a potential minimum of VZ and thus confinement for

atoms with gJmJ > 0. Those are called low-field-seekers. A local maximum

of the magnetic field would trap, in contrast, atoms with gJmJ < 0 (which

are consequently called high-field-seekers) if it existed: it was shown by Wing

[60] that in a region without currents or charges the magnitude of a magnetic

(or electric) field cannot have a local maximum. Local minima, however, do

exist12. That means that only low-field seekers can be trapped.

The magnetic dipole interaction is much weaker than the interaction

energies of ions in electric fields. If the interaction energy of the order µBB

with realistic laboratory magnetic fields of B ∼ 0.1-1 T is compared with the

thermal energy kBT , then atoms with T = 100-1000 mK can be trapped. Often,

this temperature is even much lower. It is common to specify this trap depth

in temperature units. This temperature range implies the necessity of some

sort of pre-cooling, e. g. laser cooling. It also explains the strict limitations on

background pressure that we have noted in the introduction: an atom from

the background gas with T = 300 K can easily transfer enough momentum to

a trapped atom in a collision to kick it (and many more) out of the trap. The

12Wing’s theorem is a nice curiosity from a historical perspective: although its proof just
needs Maxwell’s theory of electromagnetism which had been known since the 1880s, it took
more than a hundred years for someone to discover it – or to bother to write down [61].
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average lifetime of a trapped atom in a vapor cell with p ∼ 1× 10−9 mbar is

on the order of a few seconds.

The simplest magnetic field geometry with a local field minimum is the

quadrupole field, which is also the configuration employed in this experiment

for magnetic trapping. This field can be generated by two identical circular

coils arranged coaxially (along the z-axis). The currents in the coils have

opposite directions. The configuration is, therefore, called anti-Helmholtz.

The field produced by the coils clearly has a vanishing magnitude on the axis

in the middle between the two coils. The magnetic field can be approximated

to first order just by two simple arguments: if we put the origin at the field zero,

the fields in x and y-direction must be the same because of axial symmetry.

They are also radially orientated and have no z-components, so ~B(x, 0, 0) =

(bxx, 0, 0) and ~B(0, y, 0) = (0, byy,0) with bx = ∂B
∂x

∣∣∣
~r=(0,0,0)

= by = ∂B
∂y

∣∣∣
~r=(0,0,0)

.

The magnetic field to lowest non-vanishing order is then ~B(~r) = (bxx, bxy, bzz).

Because of the Maxwell equation ~∇ · ~B = 0, it follows:

bz :=
∂B

∂z

∣∣∣∣
~r=(0,0,0)

= −2bx = −2by . (2.37)

In the notation of this thesis, the magnetic field gradient is the gradient in

z-direction bz. It will sometimes just be abbreviated with b := bz. Its numerical

value per current in the coils I for our setup was measured to be b
I

= 0.88 G
cm A

[39]. The magnetic field of the quadrupole configuration to lowest order is
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thus:

~B(~r) =
b

2

 −x−y
2z

 . (2.38)

Its magnitude (strength) is

B(~r) :=
∣∣∣ ~B(~r)

∣∣∣ =
b

2

√
x2 + y2 + 4z2 . (2.39)

Respecting the presence of gravity in the experiments, the full potential is13:

VZ(~r) = mgz +
gJmJµBb

2

√
x2 + y2 + 4z2 (2.40)

The density n(x, y, z) of a thermal atom cloud in equilibrium as a function of

position in a quadrupole trap respecting the influence of gravity is given by a

barometric height formula:

n(~r) = n0e
−mgz
kBT e

− gJmJµBb

2kBT

√
x2+y2+4z2

. (2.41)

Figure 2.7 shows a calculated contour plot of the magnetic field strength and

the plots of the calculated radial and axial fields in a quadrupole trap, which

is idealized as two current loops.

For later discussion, it is helpful to derive the scaling laws for tem-

perature and volume in an adiabatic compression of the potential (ne-

glecting the influence of gravity). We assume a compression by a factor η

of the potential, so b → ηb. The temperature may scale with a factor ξ:

13It is assumed that the strong axis z of the quadrupole field coincides with the direction
of gravity as in our experiment.
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Figure 2.8: Field of a quadrupole trap, idealized as two current loops. The distance
between the coils is chosen to be equal to the diameter (2R) of the coils. Figure (a)
shows a contour plot of the magnetic field strength. The coil axis is located at the
center of the plane. The field zero in the center can be seen as well as the divergences
where the coils intersect the plane. Figure (b) shows a plot of the magnetic field
along the z-axis and along an arbitrary axis in the x-y-plane. The field gradient
along the z-axis close to the field zero is twice as large as in the x-y-plane.

T → ξT . The new density distribution with correct normalization is then:

n′(~r) =
(
η
ξ

)3

n0e
− gJmJµBηb

2kBξT

√
x2+y2+4z2

. The new average distance from the cen-

ter in the cloud is given by 〈r′〉 =
∫
rn′(~r) d3r = ξ

η

∫
rn(~r) d3r = ξ

η
〈r〉. So, we

have V ′ ∝ 〈r′〉3 ∝
(
ξ
η

)3

. Using the adiabatic condition for a monatomic gas

TV 2/3 = const. , (2.42)

we find:

ξ = η2/3 ⇒ T ∝ η2/3, 〈r〉 ∝ η−1/3, V ∝ η−1 . (2.43)
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Chapter 3

Methods, experiments, and results

3.1 Imaging

Nearly all information about ultracold atomic clouds and their various prop-

erties can be obtained by analysis of optical images. For the results of this

thesis, two optical imaging methods were employed, which are presented in

the following paragraphs.

3.1.1 Absorption imaging

One technique to image an ultracold atom cloud is absorption imaging. Speak-

ing in simple terms, one analyzes the shadow of the atoms which they cast in

an imaging beam. The darker the shadow is, the more atoms must have been

contained in the cloud to absorb and scatter the light of the imaging beam.

The geometry of the absorption beam in our setup is shown in figure 2.1: the

beam is delivered from the laser system [39] through an optical fiber, enters the

vacuum system through a window, propagates through the differential pump-
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ing tube, and hits the cloud in the vapor cell. The beam is turned on and off

using a combination of a mechanical shutter (slow, reaction time: 4 ms) and

an acousto-optical modulator (AOM, fast, reaction time: 5 µs) inside the laser

box. The exposure timing is defined by the AOM. The shutter completely

extinguishes any leakage of light through the AOM from hitting the cloud

during the preparation sequence. The λ/4-waveplate in front of the entrance

window allows us to make the light circularly polarized if desired. The light

then passes through a window at the front of the “square chamber” and runs

through a differential pumping tube to the vapor cell, where it hits the cloud.

It leaves the vacuum system again and is then scaled down with a telescope

and directed onto the chip of the camera. Figure 3.1 shows a schematic for

the beam path behind the vacuum system. The distances are chosen such that

both absorption and fluorescence imaging (see section 3.1.2) can be done with

the same optical setup.

“Shadow” of cloud

Imaging light

f1 f1 f2 f2

CCD

Lens 1
Lens 2

Shutter

Atom Cloud

f1 = 500 mm
f2 = 50/60 mm

Figure 3.1: Absorption imaging: the image shows the beam path in absorption
imaging. The second lens (initially f2 = 50 mm) was later replaced by a lens with
f2 = 60 mm. The magnification is thus 1:10 or 1:8.3 respectively. The shutter in
this picture is not necessary for absorption imaging, but needed for fluorescence
measurements.

The CCD-chip is typically exposed for 100 µs to the imaging light by
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flashing on the AOM1. In order to obtain quantitative information from ab-

sorption images and eliminate systematic errors, three pictures are acquired for

every measurement, each with the same exposure time: the first, Batoms, with

the atom cloud, the second one, Blight, as normalization reference without the

atoms, but with the imaging beam turned on. The last picture, Bdark, is taken

without imaging light and serves to subtract the effects of stray light sources

and the dark current of the camera. The imaging software automatically cre-

ates a new image (Batoms − Bdark)/(Blight − Bdark) from the three images.

With a short calculation, we now show how the three images can give

information about the atom number in a cloud. In an absorbing medium

the intensity of light decreases with Beer’s law as dI = −αIdx where the

Beer absorption coefficient α is proportional to the imaginary part nI of the

index of refraction of the medium: α = 2knI. For a dilute atom cloud the

energy scattered per volume is ~ωn(x)Γsc, where n(x) is the density of atoms,

Γsc is the scattering rate (from equation 2.15), and ~ω is the energy of one

scattered photon. The scattering rate is related to the scattering cross section

σsc through ~ωΓsc = Iσsc. We get:

dI = −αIdx = −~ωn(x)Γscdx = −σscn(x)I(x)dx. (3.1)

1The chip collects, however, light for a much longer duration because the internal shutter
of the camera needs ∼ 60-100 ms to open and close.
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With n(x) = dN/dV , taking dV = Adx, we can transpose and integrate:

dN = − 1

σscI

dI

dx
dV = − A

σscI

dI

dx
dx = − A

σsc

dI

I
⇒ N = − A

σsc

ln

(
Itrans

I0

)
.

(3.2)

The assumption dV = Adx is justified as long as A is small enough so that

the density does not significantly change over the size of A. Equation 3.2 gives

us a formula with which the atom number in the cloud can be extracted from

the absorption images:

Natom = −Apixel

σsc

∑
i,j

ln

(
Batoms

i ,j − Bdark
i ,j

Blight
i ,j − Bdark

i ,j

)
, (3.3)

where Apixel is the length calibration ([m2/pixel]) and the sum runs over all

rows and columns of the images. It can be seen from the result that this

method is independent of the intensity (as long as the intensity is well under

the saturation intensity Isat), though care must be taken to control the polar-

ization, which affects σsc. For this reason, the λ/4-plate is placed directly in

front of the vacuum apparatus.

3.1.2 Fluorescence imaging

Observing the fluorescence of an atom cloud exposed to near-resonant light is

another way of imaging it. The cloud is exposed to the MOT beams (both

the cycling and repumping lasers) for a duration of 1 ms during which the

scattered light is collected with the CCD camera. We typically use a detuning

of δ = −3.5 Γ and the maximally available power in the MOT beams. Figure
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3.2 shows schematically the optics that are used to image the cloud on the

CCD-Chip. The objective lens (L1) is placed directly behind a window of

MOT Beams

Atom Cloud

relevant solid angle Ω

CCD

Shutter

Lens 1

Lens 2

h

f1 f1 f2 f2

f1 = 500 mm
f2 = 50/60 mm
d = 6 mm

cyclingrepumping

d

Figure 3.2: Fluorescence imaging: the figure shows the beam path in fluorescence
imaging. A shutter controls the exposure time because the built-in shutter of the
camera does not work reliably.

the vacuum apparatus. It has an diameter of 2′′ and its focal length is f1 =

500 mm. The ocular was exchanged during the measurements for this thesis.

Originally, it had a diameter of 1′′ and a focal length f2 = 50 mm, but it was

replaced by a 2′′-lens with f2 = 60 mm. Since we use the same setup also for

absorption imaging, the optical pathlength between the two lenses is exactly

the sum of both focal lengths. The objective lens itself is f1 = 500 mm away

from the object, namely the cloud in the magneto-optical trap. In the actual

setup, a mirror is located between lens 1 and lens 2 for practical reasons (lack

of space, see figure 2.1).

It was checked that vignetting [62], a common imaging problem for off-

axis objects, is not a problem in our setup. For a detailed discussion see

appendix B.1.

The number of photons scattered per time t by a cloud with Natoms atoms
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is NatomsΓsct, where Γsc is the atomic scattering rate from equation 2.15. The

atom number Natoms can thus be extracted from fluorescence images according

to

Natoms =
4π

Ω

Ncounts QE

ce− Γsc texp 0.96k
, (3.4)

where Ω is the solid angle effectively contributing to the image, Ncounts is the

number of counts from the CCD that constitute the image of the cloud, QE

(0.75 for the camera used) is the quantum efficiency of the camera chip, ce−

(216/100000) is the number of counts that are registered per photo electron,

texp the exposure time of the chip to the fluorescent cloud (usually 1 ms), and

the factor 0.96k takes into account losses by reflection on glass surfaces with

k being the number of surfaces without anti-reflection coating (k = 2). From

figure 3.2, it can be inferred that the relevant solid angle Ω is determined by

the diameter d = 6 mm of the shutter and the focal length f1, so Ω = 4π π(d/2)2

4πf2
1

.

Both the absorption and fluorescence images are processed with the com-

puter algebra program Mathematica. The number of counts in a fluorescence

image is calculated after subtraction of a suitable background picture B0 from

the image B to obtain a corrected image where potential counts from stray

light have been eliminated. Two methods exist to extract Ncounts then from

the corrected image: either all counts of the whole image array are simply

added up, so Ncounts =
∑

i,j Bi,j − B0
i,j. Or alternatively, a Mathematica rou-

tine determines the 1-D column density n(z) and fits a model Gaussian dis-

tribution (n(z) = ae−z
2/(2σ2)) to it, whose parameters give the count number:

Ncounts = a
√

2πσ . Summation works better for large clouds where it is more

accurate because in most cases a Gaussian function is only an approximation
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to the real shape of the cloud (e. g. an atom cloud in the linear potential of

a quadrupole magnetic trap is not a Gaussian). The strength of the second

method is that it is less sensitive to noise by stray light that would be counted

by the summation method. A particular source of stray light, which cannot

be removed by subtraction of a background image, are reflections from the dif-

ferential pumping tube connecting the vapor cell and the “square chamber”.

This reflects so much of stray light from the fluorescing atom cloud that it

can be seen on all fluorescence measurements. Thus, the integration method

is usually applied only for small clouds.

3.1.3 Choice of imaging method

Principally, absorption imaging is superior to fluorescence imaging because

it provides a much better signal to noise ratio. Particularly for small atom

numbers, it is more accurate. It is also not dependent on intensity while

quantitative analysis of fluorescence images is. On the other hand, absorption

imaging needs a clear quantization axis as it depends on σsc, so all residual

magnetic fields must be eliminated and a bias field along the imaging axis must

be applied. Then, σ+ light, e. g., can be chosen, for which σsc is well-defined.

For fluorescence imaging, in contrast, it is sufficient to assume the saturation

intensity for unpolarized light, Isat,unpol = 4.1 mW
cm2 for the cycling transition in

87Rb. Fluorescence imaging can be only performed in the vapor cell, where

the MOT beams can be used as light source.

For all quantitative analysis in this thesis, fluorescence imaging was cho-

sen for two reasons: 1) It allowed longer times of flight for temperature mea-
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surements (see next section). For absorption imaging the cross sectional area

of the differential pumping tube limits the observable region for an atom cloud.

The maximum time of flight for a cloud with diameter 6 mm is then ∼ 20 ms.

In fluorescence imaging, the observable region is defined by the first imaging

lens, for which it was calculated that flight times up to 56 ms are possible

with our setup (see appendix B.1). 2) It was discovered that the frequency

of the cycling laser had a considerable jitter, even when locked. This jitter

influences the detected atom number in absorption images much more than

in fluorescence images due to the short exposure time and the low saturation

(see appendix B.2). Because of these two reasons and knowing that the atom

numbers in MOT and MT are still large enough (in contrast to the shrink-

ing clouds during an evaporation stage), fluorescence imaging was chosen as

primary imaging method. For analysis of clouds in the science cell, where no

light source for fluorescence imaging is available, we will change to absorption

imaging again.

3.2 Determination of temperatures

In order to determine the temperature of a cooled atom cloud, we observe

its thermal expansion after release from the trap as a function of time. For

this, we take a sequence of images of clouds that have been prepared under

identical conditions and have freely expanded for a varying time t. As all

measurements described in this thesis have been taken for thermal clouds well

above Tc, we can treat the cloud classically. In this case, the expansion of a
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Gaussian thermal cloud with one-dimensional initial density profile for t = 0

n(x, t = 0) =
n0√

2πσx,0
exp

(
− x2

2σ2
x,0

)
, (3.5)

where n0 is the peak density and σx,0 the 1/
√

e-width, can be expressed as:

n(x, t) =
n0√

2πσx,0

1√
2πmkBTx

∫∫
exp

(
− x2

0

2σ2
x,0

)
exp

(
− p2

2mkBTx

)
δ

(
x− x0 −

pt

m

)
dp dx0 (3.6)

where δ is the Dirac δ-distribution, m the mass of the gas atoms, p the mo-

mentum, and 1/
√

2πmkBTx exp [−p2/(2mkBTx)] the momentum distribution

at temperature Tx. The double integral represents a convolution of the initial

density profile with the momentum distribution. It has a descriptive meaning:

the two integrals express the expansion of every point x0 due to the ther-

mal velocity distribution at that point, which yields after integration the new

density distribution:

n(x, t) =
1

√
2π
√
σ2
x,0 + kBTx

m
t2

exp

[
− x2

2
(
σ2
x,0 + kBTx

m
t2
)] (3.7)

From this expression, the 1/
√

e-width after an expansion time t is clearly:

σx(t) =

√
σ2
x,0 +

kBTx
m

t2 , (3.8)

The temperature now is simply obtained by fitting the model function 3.8 to

the data (after generating a 1-D column density). This proves to be a robust
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method, and we usually do not need more than four data points to obtain

trustable results. This discussion respected only one dimension, but can be

immediately expanded to three dimensions because of the separability of the

involved integrals. It is important to note that the temperature Tx was in-

troduced as a parameter describing the one-dimensional velocity distribution

in the x-direction. Under the condition of thermal equilibrium (which can

be reached in a magnetic trap), the value for Tj should be the same in each

direction j ∈ {x, y, z}. However, for many experiments a full rethermalization

before detection is not possible. Therefore, we often determine two “tempera-

tures” Ty and Tz (see section 3.7.2). Practically, we can calculate the column

densities only along the y or the z-axis. Expansion along the x-direction is

not observable as it is the optical axis of the imaging optics; we thus detect

only the projection of the cloud along this axis.

3.3 Magneto-optical trap

The collection of the atoms in the magneto-optical trap (MOT) is the first

stage of any preparation sequence in our experiment. In various measurements

done prior to the time the author spent in the research group, the MOT was

optimized and characterized [39, 63]. It was found to work best at a magnetic

field gradient2 of ∂B/∂z = 8.8 G/cm, and a detuning of the pumping lasers

of δMOT = −3.5 Γ. As discussed in [64], there is an optimal set of these

2At that time, the quadrupole coils were not the same as in the later experiments per-
formed by the author: this field gradient now corresponds to a coil current of IMOT = 10 A
while at the time of the measurements a current of 12 A was needed.
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parameters for every possible laser intensity and diameter of the trapping

beams. Increasing the field gradient means reducing the effective capture

range of a MOT. This effect is balanced by detuning the cycling frequency

further from resonance. Our values are roughly consistent with those reported

in literature ([38, 54, 64]).

Figure 3.3(c) shows the dependence of the maximum atom number col-

lected in the MOT on detuning for a magnetic field gradient of ∂B/∂z =

7.0 G/cm. As shown in figure 3.3(b), the shape of the cloud is a two-component

distribution, particularly for larger detunings: a central peak with a much

higher atom density arises over a broader, less dense distribution (figure 3.3(b)).

This fact was predicted in [52] and first observed in [55, 65]. As explained in

chapter 2, it is interpreted as manifestation of polarization gradient cooling in

the center of a MOT: for the small magnetic fields in the center of the trap,

sub-Doppler mechanisms are viable while they are impaired for the higher

field strengths in the outskirts of the cloud. We could also confirm the re-

sults in [55, 65] that for increasing field gradients the total number of atoms is

approximately constant while the number in the central distribution declines

reaching ∼ 50 % of the total atom number at a gradient of 20 G/cm (figure

3.3(d)). Since the atoms contained in the central distribution are much colder

and their density is higher, optimization includes maximization of the size of

this part of the MOT. This explains the choice of our MOT-parameters: for

a detuning of −3.5 Γ and a field gradient of 8.8 G/cm, more than 90 % of the

atoms were found to be in the center of the cloud, containing up to 1×1010

atoms (figure 3.3(d)).
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Figure 3.3: Optimization of MOT loading parameters: figure (a) shows a fluo-
rescence image of the magneto-optical trap. The atom number for this image is
1.2×1010. The cut-outs that are visible are necessary because of reflections from
pieces of the vacuum apparatus. The error caused by this correction is negligible.
Figure (b) is a graph of the one-dimensional column density in a MOT for a field
gradient of 7.0 G/cm. It shows the typical two-component distribution in a MOT.
Figure (c) shows the atom number in the MOT for IMOT = 8 A and various detun-
ings. The filled dots in figure 3.3(c) give the total atom number in the MOT while
the circled ones represent the size of the central peak. Figure (d) shows the atom
number in a MOT for various field gradients where the result for the best detuning
was taken for each field gradient from measurements as in figure (c). The data in
figures (b)-(d) was taken from references [39, 63]. At that time, the magnetic field
calibration was not the same as in the later measurements (different quadrupole
coils).
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3.3.1 Light induced atomic desorption

Klempt et al. [66] showed a multiple increase in the atom number of a magneto-

optical vapor cell trap by light-induced atom desorption (LIAD) of trappable

atoms from the walls of the vacuum chamber. This effect is analog to the well-

known photoelectric effect: atoms that have deposited to the inside surfaces

of the vacuum chamber can be dissolved by shining ultra-violet light from

outside onto the chamber. This causes a sudden increase of the background

pressure in the vapor cell and consequently raises the maximum atom number

in the MOT Nmax following equation 2.27, unless the background pressure p

is in the regime where the MOT atom number does not depend on pressure

anymore and has saturated. When the light is turned off, the atoms stick to

the walls again and the pressure drops quickly. This phenomenon offers the

opportunity to artificially raise the pressure during the loading phase of the

MOT and trap a high atom number by turning on a UV-source. The UV light

is then turned off while the MOT beams stay switched on. This allows the

background pressure to drop again. The pressure falls much faster than the

MOT atom number reacts to this decrease, and one can use the advantages of

a low pressure for the magnetic trap stage and the transport while having at

the same time the benefits from high pressure, i. e. high atom number.

The initial loading rate of the MOT R is directly proportional to the

rubidium background pressure in the vapor cell. We exploit this proportional-

ity to measure the time constant with which the background pressure settles

back to its equilibrium value. For this purpose, the UV source is turned on

for 10 s, which is more than sufficient to solve the majority of absorbed atoms
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from the wall, then turned off again. After a varied delay time t, the MOT

is loaded for 300 ms and the atom number in the MOT after this duration is

determined. This number serves as a measure of the pressure. Note, however,

that especially for short times t this is only an integrated (over 300 ms) value

because the pressure falls very quickly in the beginning. The actual pressure-

time-dependence is probably even more pronounced than in our results in

figure 3.4. This aspect may have been interpreted incorrectly in reference [66]
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Figure 3.4: Atom number in a MOT after 300 ms loading with different delay times
t after turn-off of the LIAD UV-light. The atom number is proportional to the
background pressure integrated over 300 ms at time t. The figure shows the data
on logarithmic scale: clearly two time constants, which suggest two different partic-
ipating processes, are involved while the pressure is returning to its initial value.

as they employed the same measurement method (varying delay time with

300 ms loading time), but assumed the resulting curve to be proportional to

the pressure decay. We can, however, confirm their results that the pressure

drop involves two time constants: an initially very fast fall turns into a slow

convergence to the value received without the use of desorbing light. This can

be explained if adhesion of Rb atoms to a glass surface is more favorable than

to a rubidium layer. If this is the case, the first layer of atoms will build up
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on the glass very quickly while the later layers will need more time to develop.

With a photodiode, we also measured the fluorescence of a MOT loaded with

LIAD after the UV-light had been turned off: it takes many seconds (∼ 30 s)

for the fluorescence to decay to a value equal to the fluorescence if loaded

without LIAD.

The enhancement factor of the atom number by use of LIAD is about

20-30 for very low background pressures. Similarly to the procedure in section

3.22, we also examined the enhancement as a function of background pressure:

the rubidium oven was opened and over a duration of two hours the atom

number in MOTs loaded without and then with LIAD was measured along

with the lifetime of a magnetic trap, which is inversely proportional to the

background pressure in the vapor cell. The data was taken in intervals of five

minutes to allow enough time for readsorption of the dissolved atoms. It is

shown in figure 3.5. It was found that for higher pressures the positive effect of

LIAD degrades dramatically and finally vanishes. This is not surprising since

the MOT atom number does not increase with rising background pressure

anymore in the regime where the rubidium density dominates the density

of other species in the MOT (see explanation in chapter 2). Consequently,

the additional increase of pressure by LIAD does not show any effects. The

enhancement for low background pressures is not large enough to operate

the apparatus in this regime: with the short transport times to the “square

chamber” realizable with the translation stage, it is still more efficient to load

a MOT with a large atom number at high pressure than to load it with LIAD

at a low background pressure.
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Figure 3.5: Light induced atomic desorption: figure (a) shows the atom number
in the MOT NMOT as a function of time after opening the oven, so as a function
of background pressure with and without the use of LIAD. Figure (b) shows the
enhancement, i. e. the ratio of the two data sets in figure (a). Figure (c) shows
the decrease of the lifetime τVC in the vapor cell during the experiment. The runs
were taken in equal intervals over a time of two hours after the rubidium oven at a
temperature of 22 °C had been opened.

3.4 Compressed magneto-optical trap

While the low field gradient of a MOT is suitable to capture a big number of

atoms and to reduce losses due to reabsorption of photons, it is not adequate

for the following sequence steps for two reasons. First, the density of the cloud

is low, which is not desirable for evaporative cooling; second, the size of the

cloud is large, which makes transfer into a magnetic trap difficult. Therefore, a

typical element in any preparation sequence is the compression of the magneto-

optical trap (CMOT), first demonstrated by Petrich et al. [65]. It exploits the

dependence of the density n in a MOT on the spring constant κ in the regime

where the density is limited by reabsorption of scattered photons (see chapter
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2) [52]:

n =
3κc

Iσ2
l (σr/σl − 1)

, (3.9)

where σl is the cross section for absorption of photons from the laser field

and σr the cross section for reabsorption of scattered photons. The spring

constant κ is proportional to the field gradient b. An increase of b, therefore,

raises the density in the MOT. This is, however, only a transient effect as the

capture volume of the MOT, which influences the maximum atom number,

is decreased by the compression. After a time comparable to the trap loss

constant τ (equation 2.26), the gain in density must be paid with a loss in atom

number. Therefore, the compression must be fast and immediately followed

by the switch-off of the MOT and an efficient cooling stage by optical molasses

that reduces the high temperatures in the cloud (some hundred microkelvins)

after MOT and CMOT.

The CMOT was optimized with respect to the following conditions (in

this order): first, the total atom number should not decrease significantly dur-

ing the compression3. Second, the density is to be maximized. Similarly to

[65], we found that a ramp of the magnetic field gradient is better than a

sudden change, during which atoms can be lost. The two parameters to be

varied in the CMOT step are essentially the ramp time and the maximum

field gradient after compression. In practice, we optimized the CMOT with

a subsequent standard molasses stage (see figure 3.6(b) for illustration of the

sequence). Because we observed that the cooling effect of any molasses is

3This follows the general agreement that the atom number is the most important single
parameter of a MOT/CMOT in predicting the chances for a BEC.
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quite independent of the properties of the cloud that is loaded into it (such as

atom number, density, and temperature), we think that this was an acceptable

procedure. Adding the molasses, however, allows us to determine the temper-

ature more easily due to the low temperatures produced by it. Figure 3.6(a)

shows the phase space density D (defined in chapter 1) for various final field

gradients after the compression and application of optical molasses. Because

there is no strong dependence visible, we decided on using the parameters for

which we lose the least atoms. For a final field gradient of about 90 G/cm

(in lab units4: A07 = 2.0 V and a compression time of 500 ms), we lost an

negligible amount of atoms. It was not necessary to adjust the detuning for
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Figure 3.6: Optimization of the compressed MOT: figure (a) shows the phase space
density D after MOT compression and molasses for different field gradients after the
compression. Figure (b) illustrates the employed sequence. The compression time
and the final field gradient are varied. The temperature is determined by time of
flight measurements after a standard molasses. The atoms are detected (Det.) by
fluorescence imaging. All values are in lab units.

the CMOT compared to the MOT stage. It must be mentioned, however,

4The calibrations defining the lab units are listed in appendix B.3.
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that these measurements were taken at a time when the background pressure

in the MOT cell as well as the absolute atom number in the MOT was very

low. In later measurements, we directly observed the losses in each single se-

quence step (see section 3.9.3). The CMOT still worked well for small clouds

(negligible losses compared to MOT), but for high MOT-numbers of up to

10× 109 atoms it had to be readjusted so that we could still hold about 85%

of the initial atom number. Both the final field gradient and the detuning had

to be increased. For large clouds, the best parameters are a compression to

∂B/∂z = 110 G/cm (A07 = 2.5 V) and a jump of the detuning after the MOT

stage from −3.5 Γ to −4.9 Γ. This confirms an assumption made in [65]: for

big MOTs the atom number is limited by reradiation of absorbed photons.

Because the dependence of the reradiation force on the detuning is stronger

than for the trapping forces, increasing the detuning helps hold the atoms.

3.5 Molasses

The CMOT is followed by an optical molasses stage for further cooling. Al-

though in early BEC experiments [5] the clouds were directly loaded from the

CMOT into the magnetic trap, it was clear from the beginning that this could

not be realized with the high atom number in our experiment. We found tem-

peratures after MOT and CMOT that were substantially higher (∼ 900 µK)

than the Doppler limit TD ≈ 146 µK. We tried to reduce this temperature

by varying different parameters with little success. However, a general de-

pendence of the attainable temperature on the absolute number of atoms in
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the cloud was observed (see figure 3.7). We first tried to lower the temper-
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Figure 3.7: Temperature in a MOT as a function of atom number: figure (a) shows
the dependence of the temperature in a MOT on the repump power. Figure (b)
shows the atom number for the same experimental runs as in (a). The similar
trends suggests a direct relation of temperature and atom number, plotted in (c)

ature in a MOT by changing the repump power, which could be a source of

unnecessary heating. We found that as soon as the temperature decreases,

the atom number also starts declining. Plotting the atom number against the

temperature though shows that there is a direct relation between these two

quantities for large MOTs, probably because of the increasing importance of

multiple scattering with increasing atom number.

The temperatures attained in our MOT are a bad starting point for

magnetic trapping. For this reason, one usually implements an optical molasses

stage, which further cools the atoms down. During the molasses, we sweep the

detuning of the cycling linearly from δ = −3.5 Γ to a final value of −6.0 Γ in

5 ms. During this interval, the cycling laser is kept at full power while the

repump laser is switched to a value of ∼ 2% of its maximum power. This

did not affect the atom number compared to leaving the repumper at full
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power, but reduced the temperature by a factor of two. In combination with

the CMOT, the molasses reduces the temperature to 25 µK (figure 3.8). This

value was very robust against fluctutations in atom number, changes in the

CMOT, etc. Detuning the laser during the molasses further from resonance

would produce even lower temperatures, but also increase the losses in atom

number. The PSD D after the molasses is on the order of 1×10−5.
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Figure 3.8: Determination of molasses temperature by time of flight measurements.
The phase space density D after optical molasses is ∼ 1×10−5. The solid line in
figure (a) is the model (equation 3.8).

3.6 Optical pumping

After cycling the rubidium atoms on the (5 2S1/2,F = 2 → 5 2P3/2,F
′ = 3)-

transition during the laser cooling stages, we are principally able to magnet-

ically trap three species, namely atoms in the mF = −1-substate5 of F = 1

(|1,−1〉) or in the mF = +1,+2-substates of F = 2 (|2,+1〉, |2,+2〉). A

5Note that for F = 1 the gF -factor is −1/2. Therefore, the state with negative mF is
low-field-seeking.
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|1,−1〉-cloud can be produced by turning off the repump laser for a few mil-

liseconds after molasses while still cycling: all atoms will eventually gather in

the F =1-state, which has only one magnetically trappable substate mF =−1.

We decided, however, on choosing the |2,+2〉-substate since the trapping force

gFmFµB∂B/∂z is twice as large, giving us a factor 23 = 8 in the initial density

before evaporation. The hyperfine level F = 2 has five substates. If the mag-

netic trap stage is placed directly after the molasses, only a certain fraction of

the atoms (less than 20 %), which is determined by the Clebsch-Gordon coef-

ficients, would be in the |2,+2〉-substate. In order to collect as many atoms

in the |2,+2〉-state as possible, optical pumping of atoms in other states to

|2,+2〉 is implemented following the molasses phase.

Because we observe that complete pumping to |2,+2〉 is not possible (see

below), we choose the parameters for the magnetic trapping (see corresponding

section) such that the atoms in the other trappable substate of F = 2 (|2,+1〉)

are also caught. They will function as a cooling agent during evaporation for

the |2,+2〉-atoms because they are first evaporated in a magnetic trap due to

their weaker confinement. This “sympathetic cooling” was first demonstrated

by Myatt et al. [67]. In the pumping step, the cloud is exposed to on-resonance

σ+-polarized light from the pumping laser for several milliseconds. We couple

this light out of the linearly polarized, on-resonance absorption imaging beam

with a polarizing beam splitter (see figure 2.1). The power of this pumping

beam is on the order of 100-200 µW (on a area of 4 cm2). The efficiency of

the pumping can be analyzed with the Stern-Gerlach method described below

(section 3.6.1). Doing this, we found that complete pumping to the mF = 2-
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state is not realizable. It was never possible to bring more than ∼ 65% in

the |2,+2〉-state with ∼ 25% in the |2,+1〉-state. Bad alignment, insufficient

pumping power, mismatched polarization, and incomplete repumping were

ruled out as reasons. Instead, it is very likely that reabsorption of photons

with random polarization scattered by the optically dense cloud limits the

pumping efficiency. This is quickly shown by a rough estimate. The mean free

path l of a photon is given by l = 1
nσsc

, with n the atom density and σsc the

scattering cross section. We use σscI = ~ωΓsc:

l =
1

nσsc

=
I

n~ω
2

Γ

1 + s0 + (2δ
Γ

)

s0

≈ Is
n~ω

2

Γ
for I � Is and δ = 0. (3.10)

and typical values (Is = 1.67 mW/cm2 6, N = 5 × 109, V = 4/3πσ3, with

σ = 3 mm ), this gives l = 0.1 mm� σ, so on average, a photon will experience

multiple rescattering. This is in agreement with the following observations: the

pumping efficiency gets smaller for larger atom numbers in the MOT. We see

differences on the order of 10 % for clouds whose atom numbers differ by a

factor of 5. Also, the pumping efficiency could be increased significantly by

first releasing the cloud and allowing the density to decrease before pumping.

The fraction of atoms in |2,+2〉 increased from ∼ 60 % to ∼ 80 % when the

time of flight before pumping was increased from 4 ms to 20 ms.

This is a basic limitation for our experiment, for we cannot afford a reduc-

tion of the density, which is decisive for the success of evaporation. Eventually,

we use pumping times of 4-8 ms. The relative gain in atom number (in the

mF =2-state) depends strongly on the absolute atom number: for unpumped

6This is the saturation intensity for σ+-light on the cycling transition. See appendix D.
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clouds, we measured 41 % in the two trappable states (mF =1: 24 %, mF =2:

17 %, atoms in molasses ∼ 8 × 108), shown in figure 3.107. With pumping,

we could bring as many as 90 % in trappable states for small clouds8 (24.5 %,

65.5 %, 8× 108). For the highest atom numbers possible with our apparatus,

this ratio goes down to9 ∼ 50 % (14.5 %, 35.5 %, 6.3× 109).

3.6.1 Stern-Gerlach analysis of optical pumping

In order to determine the efficiency of the optical pumping phase described in

the previous section, we exploit the separation of the five magnetic substates

of 5 2S1/2, F = 2 in an inhomogeneous magnetic field by performing a Stern-

Gerlach measurment. Figure 3.9 shows schematically the sequence we employ.

After pumping, we let the cloud fall for 19 ms. After this time, the cloud is

at a position where the magnetic field gradient (and thus the force it exerts)

has a definite direction (whereas around the trap center the field lines go

in all directions). Here the field of the quadrupole coils is suddenly turned

on at a value of 353 G/cm for 5 ms. This kicks the atoms of the different

substates in different directions, with different accelerations and with different

final speeds after this flash (or has no effect on them10 for mF = 0), thus

spatially separating them. To achieve full separation, we let the system evolve

for another 14.5 ms before detection with just a very weak bias field turned on

7run 37, 02/17/2007
8run 40, 02/17/2007
9run 38, 03/02/2007

10After t = 19 ms time of flight, the atoms experience a magnetic field strenght of B =
353 G

cm ×
1
2gt

2 = 63 G. This magnitude is well in the low-field regime for the ~I- ~J-coupling.
The hyperfine Paschen-Back regime for the 5 2S1/2 ground state starts around 1000 G (see
reference [48]).
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to avoid relaxation. Figure 3.10(a) shows a typical image for an unpumped

cloud consisting of five separated density peaks representing the five substates.

It can also be seen that for the “negative” substates (mF = −1,−2) the clouds

are expanded in the x-y-plane while the “positive” substates (mF = +1,+2)

are compressed. This is caused by the components of the field gradient in the

x-y-plane, which only vanish on the z-axis. The cloud, however, is not a point

on the axis, but an extended object, which explains the deformations. For the

analysis, we calculate the column density on the z-axis from the pictures and

use a fitting procedure to calculate the relative atom numbers in each of the

states. The model function is the sum of five Gaussians with equally spaced

centers and the same width. The relative atoms numbers are then given by

the ratios of the five amplitudes (compare figure 3.10(b)).

3.7 Magnetic trap

Pumping to trappable states marks the last optical step on the road to BEC.

Following this, the atoms are transferred to a magnetic trap (MT), then trans-

ported to the science cell, where eventually the evaporative cooling will take

place. The magnetic trap of our experiment is of the quadrupole type with

the strong axis in the direction of gravity (see chapter 2). The coils support

currents up to 450 A, which corresponds to a field gradient of 400 G/cm. The

field gradient per current is 0.88 G/(cm A). The coils can be switched on in

1.25 ms and completely switched off in 1.5 ms11 using an integrated gate bipo-

11After these times, a steady state in current is reached again.
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Figure 3.9: Stern-Gerlach analysis sequence: the schematic starts with optical mo-
lasses as the last step of the preparation sequence before optical pumping. The
MOT and CMOT stages are left out. Optical pumping is executed in the stage
“pump 2” by flashing on the imaging AOM. The stage “pump 1” is necessary to
allow the imaging shutter enough time to open and to bring the majority of atoms
into F = 2. Then the cloud is released (A) and falls for 19 ms to a position where the
direction of the field gradient is well defined for the entire cloud volume (B). During
this time of flight, a weak bias field prevents spin relaxation. Then the magnetic
field is suddenly turned on for 5 ms, thereby separating the five substates (C). The
system evolves for another time of flight of 14.5 ms to guarantee sufficient separation
of the five substates at detection (D).
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(b) Stern-Gerlach analysis

Figure 3.10: Figure (a) shows a typical result of a Stern-Gerlach measurment. Figure
(b) shows the analysis: the resulting 1-D column density is fitted with a model
function consisting of the sum of five Gaussians (equally spaced, equal widths, but
different amplitudes).

lar transistors, which will be described along with the circuitry and the power

supply in reference [39].

Optimization of the magnetic trap stage involves several aspects: a rea-

sonable value for the initial magnetic field (from now on referred to as “catch

field”) has to be found. Ramping up the field starting with ∂B/∂z= 0 or with

a very low field gradient is unfavorable because the cloud could expand non-

adiabatically during the ramp and gravity would cause a significant offset of

the center of mass of the cloud with respect to the minimum of the potential,

which would lead to a sloshing motion, i. e. additional energy, heating the

cloud during rethermalization. However, if the field is starting with a high

value, large parts of the cloud will suddenly be placed in regions of a high po-

tential energy, which will introduce additional kinetic energy, again resulting

in heating. There is consequently an optimum value for the catch field. This

is sometimes referred to as mode matching [68]. The other concern in the MT

phase is the compression of the trap. Here, a slow enough ramp speed needs to

be found that guarantees adiabaticity and thus conserves phase space density.
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The ramp also needs to be speedy since we want to move the MT as fast as

possible out of the vapor cell (where it is exposed to more trap loss collisions

than in the “good” vacuum in the square chamber and the science cell). We

also have to pass the narrow differential pumping tube (see the machine draw-

ing 2.1) with the MT, imposing a size limitation. Therefore, the MT needs to

be (at least partially) compressed when it enters the tube in order to avoid

hitting its edges.

3.7.1 Switching on the magnetic trap: the optimum

catch point

The systematic measurements for the MT stage were done when it was still

intended to produce a |1,−1〉-condensate. Later it was decided to seek a

|2,+2〉-condensate because the magnetic force is twice as strong for this state,

yielding a density eight times larger in the MT compared to |1,−1〉. The

optimization described in the following paragraphs was not redone in full scale,

but the results can be immediately applied to the |2,+2〉-state by rescaling

the magnetic field by a factor of 2. To optimize the catch point we used the

sequence illustrated in figure 3.11. The cloud is captured with a constant

magnetic field, which stays turned on for 150 ms. This duration of the step

ensures that all atoms in the mF =0-state have enough time to fall out of the

field of view. It is also needed to observe the effect of a field gradient that

causes a force on the mF =−1-atoms just about as strong as gravity: if gravity

exceeds this force just a bit, the cloud should slowly fall during the holding

time. If, on the other hand, the magnetic force is slightly stronger than gravity,
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Figure 3.11: Sequence used to optimize the catch point (not drawn to scale): the
“Repump off”-step (no. 4) creates a F =1-cloud. The magnetic field in the “catch”-
step (no. 5) is varied. For each value of this field, we also vary the time of flight in
order to determine the temperature. All values are in lab-units, i. e. the voltages
applied on the analog channels. (Decreasing the AO0-voltage means actually in-
creasing the (absolute) value of the detuning; the detuning must be measured from
AO0 = 9.74 V as indicated in the schematic.)

the potential is deformed (as shown in figure 3.12), but its minimum stays at

the same position. In thermal equilibrium, the density of the atoms in the

trap is given by:

n(x, y, z) = n0e
−V (x,y,z)

kBT = n0e
− gFmF µBbz/2

√
x2+y2+4z2+gmz

kBT , (3.11)

where V (x, y, z) is the full potential energy (consisting of the gravitational

energy and the potential energy due to the magnetic field), bz = ∂B/∂z the

axial field gradient, g the earth acceleration, and m the mass of 87Rb. It can

be easily seen that the position of the maximum density does not change due

to gravity. In our analysis, we do, however, not observe the actual density, but
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Figure 3.12: Gravity adds an additional term to the potential energy that breaks the
point symmetry with respect to the field zero along the z-axis. This effect must be
taken into account when the catch field for the magnetic field is chosen. The figure
shows different situations: the pure magnetic potential (for maximal field gradient)
and gravity is shown. The other curves represent the full potential for different field
gradients ∂B/∂z. The dimensionless quantity ε is defined as ε = mF gFµBbz

mg . The
ratios refer to mF =−1 (gF = −1/2).

we detect the projection of the cloud into the y-z-plane (which corresponds

to an integration along the imaging axis x) and we then sum up the columns

of the image with the analyzing routine again along the y-axis. Eventually,

only the column-density along the z-axis is discussed. After integration along

the x-axis one obtains for the two-dimensional density distribution (“column

density”) [69]:

n(y, z) = 2n0e
− mg
kBT

z
√
y2 + 4z2 K1(

1

2

gFmFµB

kBT

∂B

∂z

√
y2 + 4z2) , (3.12)

where K1 is the modified Bessel function of the second kind and first order.

Figure 3.13(a) shows a column density plot for a magnetic force that is just

76



16% stronger than gravity, both in experiment and theory. It can be seen

that the cloud leaks out in the direction of gravity. Also, the highest column
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Figure 3.13: Effects of gravity on clouds in linear potentials: figure (a) shows a
density plot of an atom cloud in a linear potential that is just slightly stronger than
gravity, ε = mF gFµBbz

mg = 1.16. The top picture is the experimental data (after a time
of flight of 5 ms) and the bottom one the theoretical calculation. The differences
in shape is due to incomplete rethermalization after 150 ms. Figure (b) shows the
1-D column density (numerical top, experimental bottom) after summation along
the y-axis. The maximum is shifted away to -2.16 mm from the minimum of the
potential at z = 0.

density is not at the minimum of the potential. This effect is enhanced further

by summation along the y-axis (which is done in the image analysis) as shown

in figure 3.13(b). Consequently, when we extract the maximum of the column

density, there is no sharp transition for its position when the magnetic force
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surpasses gravity. This is reflected in figure 3.14(a), where the vertical dashed

line marks the critical field gradient of bcrit = 30.6 G/cm that is necessary to

support the |1,−1〉-atoms against gravity. Figure 3.14(b) shows the temper-
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Figure 3.14: Optimization of catch point for |1,−1〉-atoms. For discussion see text.

ature of the cloud after the hold in the trap (phase 5). The lowest values

are close to the temperature we measured for the pure molasses (section 3.5).

There is no significant heating by low catch fields. This changes for higher

catch fields. It can also be seen that the temperatures12 along the y- and the

z-axis drift more and more apart for higher catch fields because the atoms ac-

12Note that these are not actual temperatures, but rather parameters describing the width
of the velocity distribution along the axes. See the discussion in section 3.2.
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quire more excess momentum along the z-axis where the field gradient is twice

as strong as on the y-axis. This also means that the rethermalization time for

the trapped clouds at those field gradients is longer than 150 ms, which is also

suggested by the different shapes in figure 3.13(a). Figure 3.14(c) gives the

fraction of atoms that are still present in the trap after the 150 ms hold dura-

tion. Above the critical field gradient this fraction first rises faster, but slows

down. This is because for low field gradients the potential is very shallow for

negative z (figure 3.12), allowing high-energetic atoms to escape as the trap

depth discussed in chapter 2 is lowered by gravity13. Figure 3.14(d) shows

the deduced phase space density D in arbitrary units after the procedure. As

expected and just explained, the maximum of D is not found at the critical

field gradient bcrit, but at a slightly higher value of ∼ 45 G/cm. For lower field

gradients (around bcrit), non-adiabatic expansion (that reduces the density n),

and the thermal losses of fast atoms going over the hump of the potential

(which diminishes the atom number N) reduce the phase space density while

higher field gradients add excess potential energy that converts into kinetic

energy, thus raising T and again reducing D.

An attempt was made to redo this catch point analysis for a mixed

|2,+1〉, |2,+2〉-cloud, but we had to deal with a quite unstable performance of

the machine when the data was taken (appendix B.2). The results are shown

in figure 3.15 and seem to confirm the earlier ones. As complete pumping to

the |2,+2〉-state is not possible, it is not expected that the optimum catch

13Compare figure 3.13 and figure 2.8(b). Gravity makes the potential shallow (figure
3.13), but the linear potential, which is only an approximation around the field zero, does,
of course, not extend to infinity. Rather, there is a hump (figure 2.8(b)), approximately at
a position comparable to the radius of the quadrupole coils.
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point would change significantly: if the catch point remains unaltered, there

is, of course, more heating due to the acquired potential energy for the |2,+2〉-

atoms. The resulting reduction of D is, however, compensated above a certain

field gradient because the |2,+2〉-atoms are caught as well as the |2,+1〉-atoms.

The final catch point was chosen at ∂B/∂z= 48.5-53 G/cm (AO7 = 1.1-1.2 V),
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Figure 3.15: Optimization of catch point for pumped |2,+2〉-atoms-clouds

slightly higher than the optimum determined above, in order to minimize the

loss of atoms during the subsequent compression of the magnetic field (see

next section).

3.7.2 Compression of the magnetically trapped cloud

The next concern is to find a rate for compressing the magnetic field so that

adiabaticity is guaranteed and D stays unaltered. The effect of this ramp is

studied in the following way: the cloud is first caught with a catch field gradient

of ∂B/∂z = 53 G/cm (which is the optimum catch point, see previous section),

which is immediately followed by a linear ramp of 125 ms to a varying peak field

gradient and then again ramped down to 53 G/cm (compare figure 3.16). The
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Figure 3.16: Sequence for ramp speed optimization: the atoms are caught with a
catch field of 53 G/cm (AO7 = 1.2 V). The field is immediately increased linearly to
a maximum field gradient within 125 ms and ramped down again in the same time
to its initial value, followed by a temperature measurement.

“temperature” after this sequence is determined by the usual technique. With

this method, different ramp speeds can be realized. An alternative method

would be to ramp up to the same value and vary the ramp duration instead.

However, such a procedure would suffer from the effects of the relatively short

collisional lifetime in the vapor cell. Different heating rates are found for

the z and the y-axis. This is expected because the field gradient along the

z-axis is twice that on the y-axis and the procedure does not allow enough

time for rethermalization. The heating rate due to ramping can, however, be

estimated. The direction-dependent parameters Tx, Ty, and Tz are measures

of the average kinetic energy of an atom in the specific direction:

〈Ekin〉 ∝ v2
x + v2

y + v2
z ∝ Tx + Ty + Tz. (3.13)
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After rethermalization every degree of freedom carries the same energy accord-

ing to the equipartition theorem, so:

Tx + Ty + Tz = 3Treth ⇒ Treth =
1

3
(Tx + Ty + Tz) . (3.14)

From fluorescence measurements, Ty and Tz can be extracted while Tx may

be assumed to be the same as Ty because of the rotational symmetry of the

trap in the x-y-plane. We assume that the non-adiabatic heating in a first

approximation is not only dependent on the ramp speed ∆b/∆t, but also, for

a fixed rate ∆b/∆t, on the ramp duration ∆t, which is then proportional to

∆b = bfinal−bcatch. Therefore, figure 3.17 shows the dependence of temperature

on the product of ramp rate and height ∆b2/∆t additionally to the measured

data in 3.17(a). The red line gives the rethermalization temperature calcu-

lated with equation 3.14. Its slope is κramp = (6 ± 2) K
100 (G/cm) (G/cm/ms)

. This

calculation yields for a typical ramp of 350 G/cm in 500 ms a non-adiabatic

heating of ∼ 15 µK. It must be mentioned that the error for this value is large

as anticipated from the scatter of the data in figure 3.17(b). The error is

±2 K ms
100 (G2/cm2)

. However, even in an extreme case, a full ramp from the catch

point to the maximal field gradient with ∆b/∆t = 350 G/cm/300 ms and the

upper bound of κramp = 8 K ms
100 (G2/cm2)

, leads to a non-adiabatic temperature

increase of only14 ∼ 33 µK in contrast to ∼ 245 µK15 by adiabatic heating.

Perfect adiabaticity would require an infinitely slow ramp, which is, of course,

14∆Tnon−adiab = κramp
∆b
∆t∆b = 8.0 K ms

100 (G2/cm2) ×
350
300

G
cm ms × 350 G

cm = 33 µK
15∆Tadiab = T0(η2/3−1) = 245 µK for η = 8.2 and T0 ≈ 80 µK. The value for T0 is taken

from the data in figure 3.14(b).
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Figure 3.17: Effects of non-adiabatic compressing of the magnetic trap: figure (a)
shows the data taken. In figure (b) the final temperature is plotted in dependence
on the ramp speed ∆b/∆t and times the ramp height ∆b. The red line gives the
rethermalization temperature calculated with equation 3.14.

not viable due to the limited lifetime in the vapor cell. These measurements,

again, were taken with |1,−1〉-clouds.

Other measurements also suggest that the typical ramp rates used by

us come quite close to adiabaticity: instead of ramping the field gradient

back down to its initial value (49 G/cm, AO7: 1.1 V) as in figure 3.16, the

parameters Ty and Tz were measured immediately after reaching the peak

field bmax gradient. From these values the rethermalization temperature Treth

can be calculated with relation 3.14 and compared to the expected value in an

adiabatic compression with an initial temperature of T0 = 80 µK. The latter

value is the rethermalization temperature in the trap for a field gradient of b0 =

49 G/cm read off from figures 3.14(b) and 3.17(b). As derived in chapter 2, the

temperature in an adiabatically compressed linear trap scales as T = η2/3T0,

where η is the compression factor: b = ηb0. Table 3.1 gives the measured values
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as well as the derived quantitites and the theoretically expected temperature

Tth.

bmax [G/cm] tramp [ms] η Tz [µK] Ty [µK] Treth [µK] Tth [µK]

124 250 2.5 262 136 178 149

353 750 7.3 428 270 323 300

398 750 8.2 453 289 344 325

Table 3.1: Comparison of measured temperatures and expected temperatures in an
adiabatic process, assuming the initial temperature before compression was 80 µK.
The initial field gradient b0 was 49 G/cm.

The results listed in the table show that the measured temperatures are

in reasonably good agreement with theory and that for typical compression

rates in table 3.1 non-adiabatic heating is small compared to the adiabatic

temperature increase.

To minimize the time spent in the vapor cell, the compression of the

magnetic field can be done simultaneously with the start of the mechanical

transport (see next section)16. In this case, one needs to make sure that the

trap is already compressed enough upon entering the differential pumping tube

that it fits through, with the inner diameter of this tube being d = 10.9 mm.

For the maximum acceleration of the translation stage, the trapped atoms

enter the tube at t = 225 ms after the start of the transport. To estimate

by what factor the magnetic trap must be compressed by this time so that

16By a simple argument it can be shown that atoms are not lost by the acceleration of
the translation stage: the field gradient bz = ∂B/∂z of the catch field is chosen so that it
can support the atoms against gravity. The field gradient along the x-axis, which is the
direction of the transport, is half of the one along the z-axis: bx = 1

2bz. The maximum
acceleration with which we operate the translation stage is 450 cm/s2 ≈ g/2 (with g being
the earth acceleration). So, bx should be equivalent to a force that has the same magnitude
as the inertial force acting on the atoms because of accelerated motion and thus hold the
atoms in the trap.
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only a small ratio of the atoms is chopped off by the tube, we assume purely

adiabatic heating and calculate numerically with equation 3.12 the radius ρ of

a circle inside of which 95% of the trapped atoms are held. The center of this

circle is chosen to be the center of mass in the two-dimensional distribution

3.12 (which does not coincide with either the peak 2-D-density or the peak

3-D-density because of the anisotropy due to gravity). Figure 3.18 shows the

obtained values. The point at 155 G/cm is the field gradient reached at the

front edge of the tube with a ramp rate of 47 G/cm/100 ms (which is the

same as in the last row in table 3.1) and simultaneous motion with maximum

acceleration: 95% of the atoms are within a radius of 3 mm. This means that

the cloud should be able to pass the tube without significant losses as long

as the center of this circle is not significantly displaced from the center of the

tube and the path through the tube is parallel with respect to the axis of the

tube. From the results of other measurements (section 3.9.3), we can conclude

that the translation stages moves the trap apparently straight through the

tube as we lose as little as 35 % on a two-way transport from the vapor cell to

the science cell and back.

We conclude, therefore, that the compression rate will be determined

by the speed of the first section of the transport since even for the maximum

acceleration the compression can still be slow enough to guarantee adiabatic-

ity. If one chooses, however, to wait with the transport, leaving even more

time for the compression, one will apparently win only little in lowering the

temperature, but accept a loss of atoms due to background collisions which is

much more severe than the loss of phase space density in a faster ramp.
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Figure 3.18: Figure (a) shows the dependence of the 95%-radius on the field gradient.
Figure (b) shows a visualization of the trapped cloud for the catch field gradient
49 G/cm (top) and 155 G/cm (bottom, the field gradient when the tube is reached).
The green circle gives the size of the tube that the cloud enters during the transport.
The red dashed circles are the 95%-radii ρ from (a) for mF =1-atoms.

3.8 Transport

The magnetically trapped cloud is moved on a z-shaped path by the transla-

tion stage to the science cell with ultra-high vacuum suitable for evaporative

cooling. The path is shown in figure 3.19. The trap first passes the differential

pumping tube, enters the “square chamber”, makes a turn to the left, makes

another turn to the right, and comes to a stop in the science cell.

The optimization of the transport efficiency to the science cell comprises

two aspects: first, the effects of the acceleration on the temperature of the

cloud have to be studied. Especially the first part of the motion, which is to
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bring the atoms to the square chamber, should be fast in order to leave the

vapor cell as quickly as possible. Second, the correct path has to be found to

avoid accidental bumping of the cloud into pieces of the surrounding vacuum

apparatus. For the following discussion we use a coordinate system as defined

in figure 3.19. Luckily, the very first path programmed did not lose its entire
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M
PS-SPL024
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GMPS075F1B
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science cell
vapor cell
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(-2.159, 14.200)

(-2.600, -6.351)
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(-42.024, -6.351) x

zy

differential pumping tube
(“thin tube”)

Figure 3.19: Defintion of the lab coordinate system and path of the transport. The
picture also contains the coordinates limiting the final transportation path.

load and it was possible to detect atoms after loading, compressing the trap,

and moving it all the way to the science cell and back. Only minor changes of

this path were necessary. The different endpoints of the three (partial) paths

in figure 3.19 were determined by a simple procedure: the compressed trap

was moved to a specific point, which was varied in small intervals, moved back

again, and the atom number was determined. Figure 3.20 shows the results for
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the adjustment of the endpoint of path 3 in the science cell. The large scatter

in the results for the y-position are probably due to the problems with the

absorption imaging (see appendix B.2), which was used. The experiment for

the y-axis was performed for three different durations for which the trap was

held in the glass cell. From these results, it might be inferred that the curve

gets sharper for longer holding times. This can be explained by the assumption

that even for a fully compressed trap (the field gradient was 353 G/cm, A07

= 8.0 V) there are still some losses from collision with the walls, which will

diminish the number of atoms more for positions close to the walls than in

the middle of the glass cell, and thus a difference in the beginning will become

more pronounced. This implies that the lifetime depends on the position in

the glass cell. The figure also shows an analog measurement of the x-axis.

Obviously, the cloud reaches the end of the science cell at ∼ 18 cm. The final

endpoint of path 3 will be determined by the installation of the TOP coils and

probably be around 16 cm. Therefore, the dimensions of the glass cell in this

direction will not be critical.

To measure the heating by the transport, we moved the trapped cloud

with different accelerations and velocity profiles to the square chamber and

back and performed then temperature measurements. We did not find any

significant heating. This could, however, be due to the fact that for the short

transfer times to the square chamber and back sufficient rethermalization is

not guaranteed. If one expects the heating by the transport to act mainly

along the direction of the transport (x), then this temperature increase could

not be detected as the x-direction is also the optical axis of our imaging system.

88



1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

ato
m f

rac
tio

n

y - p o s i t i o n  i n  s c i e n c e  c e l l  [ c m ]
 

 

 

(a) thold = 30 s

1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

 

 

 

 
ato

m f
rac

tio
n

y - p o s i t i o n  i n  s c i e n c e  c e l l  [ c m ]

(b) thold = 5 s

1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

 

 

 

 
ato

m f
rac

tio
n

y - p o s i t i o n  i n  s c i e n c e  c e l l  [ c m ]

(c) thold = 0 s

0 5 1 0 1 5 2 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

 

 

 
ato

m f
rac

tio
n

x - p o s i t i o n  i n  s c i e n c e  c e l l  [ c m ]

(d) x-axis

Figure 3.20: Optimization of transport: figures (a), (b), and (c) show the atom
number after a full motion to the science cell and back, width the y-position in the
science cell varied. The cloud was held for different durations thold in the science
cell. The inner width of the glass cell in y-direction is 1.0 cm. Figure (d) shows the
result of the same experiment with the x-position varied and the y-position held
constant at 2.16 cm. Obviously, the cloud hits the end of the cell for x-values of
∼ 18 cm and larger.
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Recent temperature measurements in the science cell, however, also suggest

that there is indeed no significant heating by the transport. In the science cell,

the temperature is determined by the measurement of the cloud’s expansion

in the y- and z-direction, which allows to study the effects of the first very

fast transport motion to the square chamber. Given the racy motion of the

translation stage in the experiments, it surprises that the transport does not

cause additional heating. Though, if we apply the equivalence principle and

compare the motion with the compression of the magnetic field, we find that

the acceleration and deceleration of the stage should be an adiabatic process for

the atom cloud. If the stage is moved with acceleration a, the atoms experience

a force Facc = ma. The change of this force in time can be compared with the

change of the trapping potential in a ramp of the magnetic field. Figure 3.21

shows the motion profile of the transfer with maximally realizable acceleration

to the square chamber. The change of the inertial force is Ḟacc = mȧ. In figure
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Figure 3.21: Motion profile of the transport to the square chamber with maximum
acceleration. The transfer takes 0.84 s.

3.21(a), the acceleration is increased by ∆a = 450 cm/s2 within ∆t = 210 ms.

If we set the resulting change of the inertial force Ḟacc = m∆a
∆t

equal to the

change of the magnetic force in a compression of the trap Ḟmag = gFmFµB
∆b
∆t

,
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the motion is equivalent (for mF = 1) to a ramp rate of ∆b
∆t

= 6.7 G
cm 100 ms

.

The total acceleration increase of ∆a = 450 cm/s2 compares to a ramp height

of ∆b = 14 G/cm. The corresponding product of ramp rate ∆b/∆t and ramp

height ∆b as in figure 3.17(b) is 0.01 (100 G2)/(cm2 ms). This is a very slow

rate, and inspection of figure 3.17 confirms that it should be in very good

approximation adiabatic. Thus, only extremely fast changes in acceleration,

which are mechanically impossible, could cause a heating of the cloud. We

also think that the transport is smooth enough to rule out the possibility

of bumpiness causing abrupt small changes of the motion that would heat

the cloud. We conclude that we can use motion profiles with the maximum

acceleration supported by the translation stage and its mechanical limitations,

which is amax = 450 cm
s2

, in order to minimize the time spent in the vapor cell.

For the paths 2 and 3 in figure 3.19, speed is not critical and we chose slower

motions to avoid unnecessary stress of the translation stage.

3.9 Feasibility assessment for BEC

This section discusses a few general aspects of the efficiency of the entire pre-

evaporation sequence as well as some figure of merits that will allow us to

estimate the chances for successful evaporation.
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3.9.1 Dependence of the transport efficiency on the back-

ground pressure

The background pressure in the vapor cell plays a critical role: it determines

the maximally possible atom number (see equation 2.27, as long as the partial

pressure of non-rubidium atoms is not negligible), but also limits the lifetime

of a magnetically trapped cloud. Considering an entire sequence there are

two competing effects: increasing the background pressure raises the atom

number in the MOT, but increases the losses during the transport to the

square chamber as well. Consequently, for a fixed transportation time (which

is 840 ms if the maximum acceleration is used) to the square chamber, there is

an optimum pressure, respectively lifetime. An approximate orientation about

this parameter was obtained by opening the rubidium oven and thus increasing

the background pressure while measuring the development of the lifetime, the

number of atoms trapped in the MT, and the number of atoms that could

be detected after the trap had been moved to the square chamber and back.

Our measurements suffered mainly from the time necessary to conduct them

(∼ 3 hours for the full data set). On this time scale, laser drifts could not be

avoided, tampering the results. Figure 3.22 shows the data obtained. The

sudden jumps in the absolute atom numbers directly correlate with locking

problems of the lasers. The maximum number of atoms after transport seems

to be obtained around run 20. That means that one should aim to maintain a

lifetime of ∼ 2 s in the vapor cell. In a real sequence, one would only transport

one way, so the optimum would shift to an even lower lifetime.
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Figure 3.22: The absolute efficiency of the transport is pressure-dependent: increas-
ing MOT atom number and rising transport losses are competing effects resulting
in an optimum background pressure (figure (a)). The lifetime (b) and the relative
transport efficiency (c) decrease with rising pressure. The runs were taken in equal
intervals over a time of three hours after the rubidium oven had been opened. The
sudden jumps are caused by problems with holding the lock frequencies of the lasers.
The ratios of atoms before and after the transport cannot be compared to those pre-
sented in section 3.9.3 because the measurements were done for |1,−1〉-atoms and
the vapor cell was not isolated from residual stray light coming from the laser boxes
at that time. The temperature of the rubidium oven was 30 °C.
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3.9.2 Lifetime in the science cell

One very crucial parameter for the lifetime of atoms held in the science cell

is, of course, the vacuum, respectively the pressure. Because of the necessary

rethermalization processes, evaporation cooling is a (on the timescale of atomic

physics) lengthy procedure: one evaporation cycle in the first BEC produced

lasted 70 s [5]. A rule of thumb is that the lifetime of the trapped cloud in the

environment where the evaporation is executed should be at least 150 times

the initial elastic collision time in the cloud [53].

We determine the lifetime τSC in the science cell by a similar method

as in the transport optimization: the trap is moved to the science cell, kept

there for a varying time, and moved back to the vapor cell where the atom

number is measured by absorption imaging. A simple exponential decay law

is fitted to the data obtained. The lifetime τSC was measured at two different

y-positions of the glass cell yielding two different values. This indicates again

that the compressed trap is still so big that the walls of the science cell do

have an influence on the lifetime, and that care must be taken to move the

atoms exactly to the middle of the cell, found in section 3.8. The data again

refers to measurements with |1,−1〉-atoms; clouds consisting of |2,+2〉-atoms

are more compact, and thus the influence of the walls should be smaller. From

the results in figure 3.23(c), we deduce a lifetime in the glass cell τSC of ∼ 100 s.

A lifetime exceeding 100 s was reconfirmed for |1,−1〉-atoms in more recent

measurements by means of (more reliable) fluorescence imaging. That value

for the lifetime should be long enough for evaporation until condensation under

usual conditions.
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Figure 3.23: Lifetime in the science cell: the data in figure (a) was taken at y =
2.36 cm. The trap was then moved to a better postion (y = 2.16 cm, figure (b)). In
figure (c) the steepness of the trap was twice as high as in (a) and (b). The scatter
of the data is caused by the problems with absorption imaging, which was used,
described in appendix B.2.

3.9.3 Overall efficiency of the entire sequence

As all the optimization steps described in the previous sections were done sep-

arately, an overall estimation of the entire preparation sequence is not possible

on the basis of the data from these sections. The fluctuations and changes of

parameters like vapor cell pressure, laser power, laser stability, beam align-

ment, etc. influence the results too much and do not allow comparison of the

specific data, especially regarding the values for the total atom numbers. For

this reason, an analysis of the overall sequence was performed by measuring

the total atom number after each single step, i. e. MOT, CMOT, molasses,

MT, and transport. This procedure allows also a “fine tuning” of, e. g., the

CMOT or the catch point of the magnetic field, as it turns out that the optima

of these parameters depend on the total atom number.

Figure 3.24 shows the result of one of those measurements. The sequence

that was used for this measurement is illustrated in appendix C. In a MOT,

∼ 9×109 atoms can be captured if the rubidium pressure is sufficient. In
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Figure 3.24: Overall efficiency of the preparation sequence: the figure shows the
atom number after each step. The last two columns are clouds consisting of a
mixture of |2,+1〉and |2,+2〉-atoms with a ratio of ∼ 70 % in mF = 2 to ∼ 30 %
in mF = 1 (see section 3.6.1). The images of the clouds at each step are shown
above. It can be seen that they are often not regularly and nicely shaped. The oval
form of the cloud in the last image, however, reflects the shape of the quadrupole
potential as the time duration of the two-way transport provides enough time for
rethermalization. The color scale for the five images is dynamic.
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practice, this can be guaranteed if the oven is opened every day before the

experiments for a duration of ∼ 30 min so that the pressure can build up.

We have measured MOT atom numbers as high as 1.2×1010. The next step,

the CMOT, is very sensitive to the atom number. While for small clouds

the value of the detuning δ during compression is not very critical, careful

attention must be given to it for large atom numbers. For the measurement

in figure 3.24, the detuning during the 500 ms CMOT had to be changed to a

linear ramp from −4.9 Γ to −6.3 Γ while the magnetic field was ramped only

to a gradient of 66 G/cm (AO7 = 1.5 V). Large clouds extend to regions with

large Zeeman shifts, which are scaled up during the compression. For this

reason, the detuning has to be readjusted during the compression in order to

not lose atoms in the outer regions of the cloud. After optical molasses and

pumping, we are able to detect ∼ 50 % of the remaining atoms in the MT after

a catch with the magnetic trap and a compression of the trap to its maximum

value within 750 ms. This number is in good agreement with our analysis of

the optical pumping to trappable states in section 3.6, where we found an

efficiency of ∼ 50 % for large clouds. The last column in figure 3.24 represents

the number of atoms detected in the vapor cell after a round trip of the fully

compressed magnetic trap from the vapor cell to the science cell and back. It

shows that ∼ 65 % of the original load of the trap remained. This ratio was

increased from ∼ 35 % to this value after we had eliminated every possibilty

of stray light by covering the laser boxes with black paperboard. We assume

the losses to be caused mainly by collision with background gas atoms. The

efficiency of the one-way transport would then be
√

0.65 = 80 %. We can
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thus expect to begin evaporation with an atom number of 2.5-3.0×109 atoms,

which is in comparison with other experiments a promising starting point for

successful Bose-Einstein condensation.

3.9.4 Rethermalization rate

The preparation in the vapor cell and the transport to the science cell will be

followed by evaporative cooling. The speed of an evaporation cycle is deter-

mined by the rethermalization rate in the magnetically trapped atom cloud

because after every evaporation “step”17 the atom cloud needs to be given

enough time to return to equilibrium. The lifetime of trapped atoms in the

science cell, thus the time in which the complete evaporation must be per-

formed, is long, but not infinite. For this reason, the initial rethermalization

time is an important parameter to estimate the feasibility of Bose-Einstein

condensation. The initial rethermalization time18 is the duration which the

thermal cloud (in the fully compressed magnetic trap) needs to return to equi-

librium after a perturbation of its velocity distribution. It can be measured,

e. g., by suddenly increasing the magnetic field gradient. This would cause a

higher average velocity increase along the strong magnetic axis (z) than along

a weak axis (e. g. y) and thus increase the width of the cloud along z, σz, in

relation to the width along the y-axis, σy. After a certain rethermalization

time τreth, the cloud will have re-equilibrated and the ratio of σz and σy will

have reached a constant value.

17In reality evaporation is not executed in discrete steps, but continuously.
18“Initial” because this time decreases during evaporation.
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Practically, one can determine τreth by measuring the ratio of the two

widths σz(t)
σy(t)

as a function of time t. The duration t is the delay time between

perturbation and detection. We employ the procedure illustrated in figure

3.25 to measure the rethermalization rate directly in the science cell. The
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& ramp
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Figure 3.25: Determination of the rethermalization rate: the thermal equilibrium
in the cloud is perturbed by a sudden switch-on of the magnetic field, which causes
different heating along the strong and the weak axis of the trap. The time t that
is given the cloud to return to equilibrium in the fully compressed magnetic trap
is varied. By measuring the aspect ration σz(t)/σy(t) as a function of t, one can
determine the initial rethermalization time τreth.

cloud is prepared in the usual way and transferred to the science cell, where

it is held with the maximum field gradient for 10 s so that equilibrium is

guaranteed. Then, the trap is slowly opened by ramping the field gradient

down to its catch value. This is immediately followed by a sudden switch-

on of the full magnetic field, which causes asymmetric heating of the atoms

along the strong and the weak axis of the field. We then vary the time t for

which the cloud is held at maximum field. Doing this, we can determine the

rethermalization time τreth by measuring the aspect ratio after a hold time t

in the compressed trap as explained above. The images for this procedure are

taken with absorption imaging in the science cell. The data obtained is shown
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in figure 3.26. We measure a rethermalization time of τreth
∼= 2.0 s. This time
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Figure 3.26: The figure shows how the aspect ratio of a thermal cloud of |1,−1〉-
atoms returns to its equilibrium value. The initial rethermalization τreth time in the
science cell is 2.0 s.

constant is connected to the elastic collision rate τcoll by τreth = 2.7 × τcoll

[70]. It has been shown with Monte Carlo simulations that for successful

evaporation the lifetime τSC of the magnetic trap should allow ∼ 150 or more

collision events [53]. With the lifetime τSC = 104 s (section 3.9.2), our values

yield ∼ 140 collision events.

3.10 Conclusion

We have implemented an efficient pre-evaporation sequence for our BEC appa-

ratus. After collection of ∼1×1010 atoms in the MOT from a dilute rubidium

vapor, the atoms are compressed in the CMOT and cooled by optical mo-

lasses. Parameters were found for which the losses in the CMOT and molasses
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stage could be minimized and efficient cooling well below the Doppler limit to

∼ 25 µK was realized. For the molasses, we measure a phase space density D

on the order of 1×10−5. Optical pumping brings about half of the atoms to

trappable states. The subsequent catch with the quadrupole field was matched

to the cloud size after molasses and pumping. The temperature after the catch

is ∼ 80 µK. The trap is quasi-adiabatically compressed to its maximum field

gradient while a simultaneous transport of the trapped cloud to the science

cell is initiated. We measure a phase space density for the fully compressed

trap of ∼ 1.5-2×10−7. More than 2×109 atoms could be detected in the vapor

cell after a round trip of the magnetic trap to the science cell and back. The

lifetime of the atoms in the compressed trap was measured to be ∼ 100 s in

the science cell, where they rethermalize within an (initial) time constant of

2 s. Thus, the lifetime multiplied by the elastic collision rate of the trapped

atoms is ∼ 140, which is a promising value for this parameter.

All these parameters indicate very good prospects for a close realization

of Bose-Einstein condensation. The phase space density in the trap as well

as the collision rate are comparable to the values in other experiments while

the atom number in the trap before evaporation is even slightly higher. After

the development of an adequate evaporation procedure for our experimental

situation, Bose-Einstein condensation should be achieved very soon. By the

submission date of this thesis, a considerable increase in phase space density

has, in fact, already been observed after the first trials of evaporative cooling.
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Appendix A

Detailed explanation of lin ⊥ lin-polarization

gradient cooling

This appendix gives a more detailed treatment of the model for lin ⊥ lin

cooling proposed in [58] than the main chapter 2.

In chaper 2 it was discussed that the lin ⊥ lin-configuration effects a

spatially varying polarization that changes from circularly to linearly polarized,

again back to circularly, but with opposite helicity and so on. The light shift

discussed in section 2.3.3 depends on the Rabi frequency Ω = −eE0

~ 〈φe |ε̂~r|φg〉.

The matrix element in that expression describes the transition. For a real

atom with magnetic substates, the dependence on the polarization yields the

well-known selection rules: circular σ+-light, e. g., couples transitions with

∆mJ = +11, light with σ−-polarization transitions with ∆mJ = −1, and

linearly polarized light transitions with ∆mJ = 0. Spontaneous emission,

however, can happen with any polarization, thus the selection rule for it is

∆m = 0,±1. We want to consider atoms with angular momentum Jg = 1/2 in

1The quantum number mJ here is a magnetic number of an arbitrary total angular
momentum, F for low fields. We do not consider atoms in the Paschen-Back regime.
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Figure A.1: lin ⊥ lin-polarization gradient cooling: figure (a) illustrates optical
pumping. The solid lines are the transitions possible with σ−-light, the dashed ones
are the possibilites for spontaneous emission. Figure (b) shows the light shifts for the
substates in σ−-light. Figure (c) visualizes the Sisyphus effect in this configuration.
Figure (d) shows how the polarization changes within half a wavelength. The figures
contain much information. Full explanations are given in the text.
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the ground state and Je = 3/2 in the excited state as an example. If such an

atom has mg = 1/2 in the ground state, then it cannot go to the mg = −1/2-

state: excitation can only drive the atom to me = +3/2, from where it can

return only to me = +1/2 by spontaneous emission. In contrast, for atoms

with mg = −1/2 there is a chance to end up in the mg = +1/2-state: eventually,

all atoms will consequently gather in the mg = 1/2-state. This process is

called optical pumping, illustrated in figure A.1 (a). The matrix element

also expresses the strength of a transition, which is directly proportional to

the light shift. In σ+-light, the matrix element and thus the light shift is

three times larger for the mg = +1/2 → me = +3/2-transition than for the

mg = −1/2 → me = 1/2-excitation (see figure A.1 (b)); the situation for σ−-

light is the same, but with opposite signs. For linearly polarized light, the

transitions are equally strong. In the light field of equation 2.30, this createas

a spatially varying light shift shown in figure A.1. The cooling effect is now

based on the following model which is visualized in figure A.1 (c): suppose

an atom travels with velocity v in positive z-direction and is in the state

mg = −1/2 at z = λ/8 where the light is σ−-polarized. Because of the selection

rules, it cannot be pumped to mg = +1/2. We assume that it has traveled to

z = 3λ/8 by the next absorption event. This means that it had to climb a

potential hill and has converted kinetic energy to potential. At the top of the

hill, the light is σ+-polarized, so the atom will be pumped to the mg = +1/2,

which has a lower energy at that position than the mg = −1/2-state. From

there, it can climb the next potential hill and again be pumped to a lower

state. To summarize in energy terms: by climbing the hill, the atom converts
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kinetic energy to potential energy, which is then emitted to the light field.

The atom loses kinetic energy, thus it is cooled. The mechanism is often

called Sisyphus cooling because the repeated up-and-down in the potential

reminiscent of the famous Greek myth. One can easily identify two limitations

for this mechanism: if the atom is too fast, it will go over the potential hills

without being scattered. If the atom is too slow, one can no longer assume that

the pumping is delayed until the atom has reached the top of the hill: pumping

then happens quasi-instantaneous as soon as the polarization contains a σ+-

part2. A time lag of the optical pumping with respect to the motion of the

atom is, therefore, important such that the population of the states does not

instantaneously follow the corresponding polarization at the atom’s position.

The optimum velocity vopt is given when one pumping event happens for every

climbing of a hill, so vopt ≈ λΓsc/4.

2Note that linear polarization can be thought of as superposition of circularly polarized
fields with opposite helicity.
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Appendix B

Apparatus details

B.1 Vignetting

Vignetting [62] is a common effect in optics. We will discuss its influence on

our measurements. In optical systems with more than one aperture, images of

objects that are distant from the optical axis have a smaller luminosity than

those of objects on axis. Consider the situation depicted in figure B.1 that

corresponds to the situation in our imaging setup. The gray shaded areas

symbolize the solid angle that can theoretically contribute to a point’s image

due to the finite size of the second aperture (a). If aperture (lens) 1 is not

large enough, this angle will be diminished for off-axis objects resulting in a

darker image than for a point on the axis of the same luminosity (b). We have

calculated that for our experiment vignetting becomes a problem for point-like

objects that are 21.5 mm or more away from the optical axis. If one assumes

the diameter of a cloud to be 6 mm, this relates to a time of flight of 56 ms.

Since we have never used such long times, the effect does not influence our
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measurements.

Another minor effect with similar consequence is the variation of the

angle α(r) in figure B.1 (a). If l = f1, α is constant. In our case l is ∼ 52 cm,

so almost equal to f1 = 50 cm: Even for objects at a distance where vignetting

becomes relevant, the variation of α(r) is less than 0.01% and can thus be

neglected.

second aperture (shutter)

first aperture (lens 1)

f1 l

α

α(r)

d

d

r

r

d = 6 mm
f1 = 500 mm
l = 520 mm

(a)

(b) not contributing

Figure B.1: Vignetting: in our setup, the variation of the angle α(r) in figure (a),
respectively the solid angle Ω(r) that contributes to the image of a point is small
over the size of the cloud: α(r) varies by less than 0.01% (figure (a)). Figure (b)
shows the effect of vignetting: the angle α(r) is cut down because the diameter of
the first aperture (the lens) is not large enough. Four our values this becomes a
problem for r > 21.5 mm, which would only be relevant for very long times of flight.

B.2 Laser frequency jitter

In the course of the measurements for this thesis, a general inreproducibil-

ity for the atom numbers detected by absorption imaging was discovered. In

contrast, the values obtained by fluorescence measurements, were reproducible
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within 5 %. This discrepancy could be modeled by a rms-frequency jitter of the

cycling laser of ∼±0.5 Γ = ±3.0 MHz. The specifications of the manufacturer

for the linewidth of the laser is < 1.0 MHz. The frequency jitter influences the

atom number obtained by absorption imaging more than the one obtained by

fluorescence imaging for three reasons. The absorption imaging is on-resonance

while the fluorescence imaging was performed with a detuning of −3.5 Γ. A

shift of the assumed frequency by a jitter weighs relatively more on-resonance

than off-resonance as can be seen from equation 2.15. Thus, the jitter has a

larger influence on absorption imaging than on fluorescence imaging. It was

also found that the jitter is periodical with a frequency of 2 kHz, which corre-

sponds to a period length of 500 µs. The exposure time in absorption imaging

is 100 µs while we used 1 ms for fluorescence imaging. Consequently, the jit-

ter effect averages out in fluorescence imaging, but not in absorption imaging.

This was confirmed by an increase of the exposure time for absorption imaging:

the fluctuations in atom number decreased for longer exposure times. Further-

more, fluorescence imaging is performed well above the saturation intensity,

but absorption imaging far below. The power broadening for the fluorescence

measurments reduces the sensitivity to frequency fluctuations. It was also

possible to correct out the jitter of the frequency both for absorption and

fluorescence imaging by monitoring and recording the frequency jitter during

detection from the spectroscopy signal and calculating correction factors from

this data. The jitter originates from instabilities of the voltage applied to the

piezo-electric crystal of the laser. This was confirmed by measuring both the

frequency jitter from the spectroscopy signal and the piezo voltage separately.
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The two curves show a clear correlation. The laser was sent back to its pro-

ducer, but this insufficiency could not entirely be removed, which means that

the light of the cycling laser is not usable for quantitative analysis. All results

in this thesis with information about absolute atom numbers were, therefore,

obtained by fluorescence imaging.

B.3 Calibration of the analog channels

The calibration of the analog channels of the timing computer for cycling

detuning (AO0), cycling power (AO1), repump power (AO2), and quadrupole

coil current (AO7) define the “lab units” (in V applied to the channels) which

are sometimes used in this thesis. For reference, the calibration curves are

given in the following figure B.2.
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Figure B.2: Calibration curves of the analog channels that define the “lab units”.
The data was taken by H. Ruf. The field gradient b can be calculated from the
AO7-voltage by use of the regression in (d) and the field gradient per current b/I =
0.88 G/(cm A).
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Appendix C

Sequence illustration for overall efficiency

experiments

MOT CMOT Molasses Magnetic Catch & RampPhase
Duration [ms] 10000 500 5 8 750

250 mW

100 %

− 3.5 Γ

8.8 G/cm

 δ

Cycling 
PowerAO1

Repump
PowerAO2

Quadrupole
Coils AO7

Cycling 
Detuning AO0

− 4.9 Γ
− 6.3 Γ

− 3.5 Γ

− 6.0 Γ

(Pump 2)

Pumping

Transport (cont.)

6650 (two way)

Transport

TOF
4

Det.
1

Bias Field

(Pump 1)

100 %

2 %

66 G/cm

49 G/cm

400 G/cm

0 Γ 0 Γ

 − 3.5 Γ

5

}optional

Figure C.1: The figure illustrates the preparation sequence that was used for the last
data point (“two-way transport”) in the overall efficiency measurements described in
section 3.9.3. The atom numbers for the other stages (“Mot”, “CMOT”, “Molasses”,
“MT”) were taken with the same parameters, but only the corresponding steps
activated.
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Appendix D

Abbreviations and rubidium properties

The following symbols may be used with a global meaning in this thesis. If they

are not differently defined in the specific context of a section, they represent:

c the speed of light in vacuum: 299 792 458 m
s

~ reduced Planck constant: 1.054 571 628× 10−34 kg m2

s

e elementary charge: 1.602 176 487× 10−19 A s

µB Boor magneton: 9.274 009 15× 10−24 A m2

u atomic mass unit: 1.660 538 782× 10−27 kg

kB Boltzmann constant: 1.380 6504× 10−23 kg m2

K s2

g standard acceleration of gravity: 9.806 65 m
s2

x variable of a Cartesian coordinate system with variables x, y, z

y variable of a Cartesian coordinate system with variables x, y, z

z variable of a Cartesian coordinate system with variables x, y, z

ε̂ a unit vector

n density of a gas, usually the density of a rubidium cloud

N the amount of something, usually the number of rubidium atoms

in a MOT, MT, etc.

V volume

σ 1/
√

e-width of a Gaussian distribution
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D phase space density

m mass of the isotope 87Rb of rubidium

v velocity

ωl laser light angular frequency [2π · Hz]

ωa atomic transition angular frequency: ∆E/~ [2π · Hz]

ω atomic transition or laser angular frequency when difference be-

tween ωl and ωa is not relevant

δ detuning of the laser from resonance: ωl − ωa [2π · Hz]

λ wavelength: 2πc
ω

k wavenumber: 2π
λ

Ω Rabi frequency:
√
ω2 + δ2

Γ natural linewidth of transition [2π · Hz]

Γsc total scattering rate

σsc scattering cross section

I intensity of laser beam(s)

Is saturation intensity: 2π2~cΓ
3λ3

s0 saturation parameter: I
Is

σ+ left-circular polarization, helicity: +1

σ− right-circular polarization, helicity: −1

~E an electric field

B magnitude of magnetic field

bj magnetic field gradient in ε̂j-direction (j ∈ x, y, z) at field zero:
∂B
∂j

∣∣∣
~r=(0,0,0)

b magnetic field gradient in z-direction: b := bz

J total angular momentum number in theoretical considerations

gJ Landé g-factor of J

mJ magnetic quantum number of J

F quantum number of total angular momentum ~F = ~L+ ~S + ~I

gF hyperfine Landé g-factor of F
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mF hyperfine magnetic quantum number of F

T temperature

TD Doppler temperature limit: ~Γ
2kB

BEC Bose-Einstein condensate or Bose-Einstein condensation

Rb rubidium

MOT magneto-optical trap

CMOT compressed magneto-optical trap

MT magnetic trap

TOP time-orbiting potential

CCD charge-coupled device

AOM acousto-optical modulator

a. u. arbitrary units

FWHM full width at half maximum
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Below some physical properties of 87Rb are listed. The list contains only

data relevant in equations used in this thesis. All spectroscopic data relates to

the 5 2S1/2 → 5 2P3/2-transition (D2). The values are taken from reference [48].

Z Atomic number: 37

Z +N total nucleons: 87

m atomic mass: 86.909 180 520 u

TM melting point: 39.31 °C

pV vapor pressure at 25 °C: 3.0×10−7 torr

I nuclear spin: 3/2

ωa frequency: 2π · 3.842 304 844 68× 1014 Hz

λa wavelength in vacuum 2πc
ωa

= 780.241 209 686 nm

~ωa transition energy: 1.589 049 439 eV

ka wavenumber 2π
λa

= 2π · 12 816.549 389 93 cm−1

Γ natural line width (FWHM): 2π · 6.065 MHz

τ lifetime: 26.24 ns

TD Doppler temperature limit: 146 µK

gF=2(5 2S1/2) hyperfine Landé g-factor for 5 2S1/2, F = 2: 1/2

gF=1(5 2S1/2) hyperfine Landé g-factor for 5 2S1/2, F = 1: −1/2

Isat(F = 2→ F ′ = 3, iso) effective saturation intensity for cycling transition

with isotropic polarization: 3.576 mW
cm2

Isat(F = 2→ F ′ = 3, σ+) saturation intensity for cycling transition

|F = 2,mF = +2〉→|F ′ = 3,mF
′ = +3〉: 1.669 mW

cm2
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