Determining the Optimum Hardware for Generation of 260 nm Light

> Physics 582 Bryce Gadway Prof. Tom Weinacht

The general path to UV

Second-Harmonic Generation (SHG)

With a single input field at $\lambda_1 = 780$ nm, convert pairs of photons into higher energy $\lambda_2 = 390$ nm in a $\chi^{(2)}$ material

Delay Compensation

Account for mismatched Group Velocities in SHG

Sum-Frequency Generation (SFG)

Convert two fields entering a $\chi^{(2)}$ material into a field at frequency $\omega_3 = \omega_1 + \omega_2$

Goal: To find the nonlinear crystals which produce the most 260 nm light given reasonable constraints

SNLO

Free program from Sandia National Laboratories

Database for properties of many nonlinear crystals

Provides numerical simulations of crystal performance in difference tasks such as Wave-Mixing and OPO.

Second-Harmonic Generation

First: Look for general trends in energy output and narrow down crystal choice

<u>Second</u>: Use SNLO to do a more complete modeling

Second-Harmonic Generation

General Solution yields coupled differential equations for the two field Intensities

Simplifies for null Second-Harmonic input field, Perfect Phase-Matching, Lossless Media

Intensity of Second-Harmonic Scales as

$$I_2 \propto \tanh^2 \left(\frac{8\pi\omega_1 d_{eff} L\sqrt{2\pi I_0}}{\sqrt{n_2 n_1^2 c^3}} \right) \approx \frac{d_{eff}^2 L^2}{n_2 n_1^2}$$
 For low values

The possible crystals

Need to transmit over the range 390-780 nm

Look for high d_{eff} values, lower n values High Damage Thresholds

 $\frac{\text{Some good candidates}}{\text{BBO - Beta-Barium Borate} \quad (d_{eff} = 1.99)} \\ \text{LiIO}_3 - \text{Lithium Iodate} \quad (d_{eff} = 3.73, \text{ higher n's, Iow DT}) \\ \text{KDP - Potassium dihydrogen Phosphate} \quad (d_{eff} = 0.308) \\ \text{LFM - Lithium Formate} \quad (d_{eff} = 0.867) \\ \end{array}$

General Trend in Total Output

If we look just at the total Output LiIO₃ and BBO look to be the best, then LFM

Modeling with SNLO

All Crystal Lengths = 250 μm

Modeling with SNLO

All Crystal Lengths = $250 \, \mu m$

What about a longer crystal

More pulse energy at Second-Harmonic. But larger temporal spread due to group velocity mismatch. Will look later to see how this affects Sum-Frequency Generation.

Crystal Length = $400 \mu m$

Energy=211 µJ

Sum-Frequency Generation

Similar phase-matching Condition

$$\Delta k = k_1 + k_2 - k_3 = 0$$

+ Other assumptions yield

$$I_3 \propto \frac{d_{\text{eff}}^2 L^2}{n_1 n_2 n_3} \operatorname{sinc}^2(\Delta k L/2)$$

Sum-Frequency Generation

Similar phase-matching Condition

$$\Delta k = k_1 + k_2 - k_3 = 0$$

+ Other assumptions yield

The Crystals

Larger Wavelength range of 260-780 nm

Few good candidates

BBO - $(d_{eff} = 1.84)$

CLBO – Cesium Lithium Borate ($d_{eff} = 0.776$)

$$KDP - (d_{eff} = 0.457)$$

ADP – Ammonium dihydrogen Phosphate ($d_{eff} = 0.663$)

General Trend in Total Output

BBO is strongly favored, due to large d_{eff} value

Comparison to SNLO

What about a longer crystal?

Ideally, with no input ω_3 field, after some length ω_2 should be depleted and ω_3 should be at a max

What about a longer crystal?

Ideally, with no input ω_3 field, after some length ω_2 should be depleted and ω_3 should be at a max

So if Δk is low enough, it may be ideal to explore longer crystals (would be cheaper as well)

Longer crystal for SHG and SFG

Final Determination

BBO is the crystal of choice for both upconversion processes.

High d_{eff} Low Group Delay Dispersion Comparable Damage Thresholds

<u>Recommendations</u>: Look more closely at the advantages gained from a longer crystal length in SFG (aside from cheaper cutting). Optimize pulse delay for maximum overlap of ω_1 and ω_2 in SFG.

Thanks

- Prof. Tom Weinacht
- Dr. Martin Cohen
- Dominik Geissler

References

- R. W. Boyd, *Nonlinear Optics*, Academic Press, San Diego, 2003.
- A. V. Smith, Proceedings of SPIE, **4972**, 50-57, 2003.